AD-A283 633
A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

& Auc 2 41994 .

THESIS % @

A SCALABLE DECENTRALIZED GROUP
MEMBERSHIP SERVICE FOR AN
ASYNCHRONOUS ENVIRONMENT
by
David S. Neely
June, 1994

Thesis Advisor: Shridhar B. Shukla

Approved for public release; distribution unlimited.

94-26832 if
llllnillllﬂllllllll.’lIHIHIIIIIHII HIHIII 94 8 23 ¢ 28

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average | hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
Bnformation. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
ifor reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
§0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1994 Master's Thesis
. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A SCALABLE DECENTRALIZED GROUP MEMBERSHIP SERVICE FOR AN
ASYNCHRONOUS ENVIRONMENT

. AUTHOR(S)
David S. Neely

. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION |
Naval Postgraduate School REPORT NUMBER

Monterey CA 93943-5000

. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of|
fense or the 1J.S. Giovernment.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
pproved for public release; distribution unlimited

13. ABSTRACT (maximum 200 words) This thesis presents a globally scalable, decentralized group membership service to
manage client process groups operating in a distributed, asynchronous environment. This group membership service is totally |
scalable, handling process groups spanning a single LAN to groups spanning the entire global Internet equally well. It
provides for nested and overlapping groups, as well as multiple groups residing on a single LAN. It also provides various |
Quality of Service selections which permit individual groups to be configured for an optimal balance between high quality with
strong consistency semantics for group membership, and weaker consistency semantics with reduced complexity and latency.

This thesis describes the complete design of the protocol used to implement the group membership service. It presents the |
design requirements and goals, and underlying assumptions about the network. The various Quality of Service selections
provided by the group membership service are described in detail, as well as the interface between the process groups, the
membership service, and the underlying network. The use of a hierarchical architecture to obtain the desired scalability, |
flexibility, and robustness is explained. A proof of correctness for the protocol is presented, and a partial implementation of the §
group membership service is described.

§14. SUBJECT TERMS group membership, process groups, scalability, muiticast, reliable 15. NUMBER OF PAGES |}

idistributed computing 194

16. PRICE CODE

117. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
I CLASSIFICATION OF CLASSIFICATION OF CLASSIFICATION OF ABSTRACT
REPORT THIS PAGE ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-5500 | o ” "~ Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

UNCLASSIFIED

Approved for public release; distribution unlimited

A SCALABLE DECENTRALIZED
GROUP MEMBERSHIP SERVICE
FOR AN ASYNCHRONOUS ENVIRONMENT

by
David S. Neely
Lieutenant , United States Navy

B.S.C.S., University of Washington, 1986

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
June, 1994

Author: ’\bf“‘:j A] M("f/

David S. Neely /’

AR

Approved by:

Shridhar B. Shukla, Thesis Advisor

/KMM,

G. M. Lundy, Secon

Michael A. Morgan, Chéirfhan
Department of Electrical and Computer Engineering

ii

ABSTRACT

This thesis presents a glo. ., scalable, decentralized group membership service to
manage client process groups operating in a distributed, asynchronous environment. This
group membership service is totally scalable, handling process groups spanning a single
LAN to groups spanning the entire global Internet equally well. It provides for nested and
overlapping groups, as well as multiple groups residing on a single LAN. It also provides
various Quality of Service selections which permit individual groups to be configured for
an optimal balance between high quality wi”~ - or:. -onsistency semantics for group
membership, and weaker consistency semantics with , - duced complexity and latency.

This thesis describes the complete design of the protocol used to implement the group
membership service. It presents the design requirements and goals, and underlying
assumptions about the network. The various Quality of Service selecticns provided by the
group membership service are described in detail, as well as the interface between ihe
process groups, the membership service, and the underlying network. The use o: a
hierarchical architecture to obtain the desired scalability, flexibility, and robustness is
explained. A proof of correctness for the protocol is presented, and a partial

implementation of the group membership service is described.

Accesion For

NTIS CRA&I g
DTIC TAB
Unannounced O
Justification

By
Distribution|

Availability Codes

. Avail and/or
Dist Special

iii ﬁ

TABLE OF CONTENTS
1. INTRODUCTION ceesens vesseenas cecsesesssaseessnnas . 1
A.BACKGROUNDciiituiiiiiitncennesencsacceccacsssansssscssssssssonsssane 1
B. SCOPE AND ORGANIZATION ... ciitiiniiiiniiniiecoscaccasssaressssasssncens 3
II. ATTRIBUTES OF A MEMBERSHIP SERVICEc..ccccu....... 4
A. DEFINITIONS AND ASSUMPTIONSiiiiiiiiiiiiiiraireccecescnssoccnssons 4
L. The Networko 4
2. The Processes i 5
B. DESIRABLE ATTRIBUTES OF A MEMBERSHIP SERVICE 5
C. MEMBERSHIP SERVICE DESIGN GOALScccivnieetvcnecrocrecsncsncnas 7
Lo Scalabilityo e 7
2 EfRCIeNCY ... 8
3. Resilience to Failures and Partitions ... 8
4 Levels of ConsiStency i 9
5. Membership and Name Scope Control 9
6. Selectable Quality of Service 10
D. MEMBERSHIP SERVICE INTERFACESccciiiiiiiiiiieniincicncncnens 10
1. Network Protocol Layers i 10
2. UserInterfaceo 11
alnformational 12
b. Explicit Membership System CallsccciiiL 12
c. Implicit Membership Altering Eventsccccveeue ... 13
3. System Configuration Interface 13
E. CURRENT PROTOCOLSccciiettiitienicestcssesnccsscsoscscsasscacsenns 13
IIl. MEMBERSHIP SERVICE ARCHITECTURE cessaces ceesss 16
A, PHYSICAL HIERARCHYciiiiirniieituetnicnssonnstsscessscscacsasssssnes 16
1. Mservers and Member Interfacesl 17
2. Organization and Configuration, 18
a. Logical Hierarchyooiiiiiiiiiii i, 18
b. Physical TOpolOgycoiiuiiiiiiiii i i 19
c. Semi-static Configurationccoiiiiiiiiiiiiiiiie... 20

iv

Rkt Ahae nadetkha. . o SO Dusls et e
: : ; T - R

d. Failures, Partitions, and Dynamic Reformation 21

3. MONItOMING Set e 22
a. Definitionand Purposec..cccoovviiiiiiiiiiiiiiiiiiii 22
b.Structure e 22

C Failure Detectionccoooiiiiiiiiiiiiiiiiiiiii e, 23

4. Change-processing Core-setottt 23
Q. Definition i 23
B.PUIPOSEo 23
C.SIUCIUNEottt et e 25

d. Change-processing Sequenceccoooiiiiiiiiiiiiii ... 25

e. Multicasts and Failure Detectioncooooviiviiiii .. 26
S.LANMserver MORIOTING cc.oiiiiiiiiiiiiiii i 26
6. Hierarchical Structure 27
a Collapsing the Treeccoooiiiiiiiiiiiiiiiiiiiiiii i, 27

b. Parent MSErVerscoeeuimiuiiuiiii it iiiiiiiiiiinne i, 28

B. APPLICATION GROUPS coeene Ceeesecstctectettitttateancasannnas 29
1. Application Groups and the Physical Hierarchy 29
a. Scalabilityccooiiiiiiii i 29
b.CONSISIENCYcoooniiieineii it i i e 29
C.Naming ... e 30

d. Membership Scope Controlcoiiiiiiiiiiiiiiiii L. 31

2. MemberInterfaces 32
A PUIPOSE 32

b. Application Member Process Monitoring 32

3. Application Group Change Processing 33
IV. MEMBERSHIP SERVICE PROTOCOLSccccvvivevennee.. 34
1. General Message Typescooiiiiiiiiiiiiiiiii i 34
2. General Message Format 38
3. General State of Mserversand MlIs ...l 40
Q. MSEIVEES ... e e 40
B.MIS .o 40

4. Physical and Application Group ProtocolsL 4]
A. PHYSICAL MONITORING PROTOCOLc......... ceeeee cesesensens 41
1. Pairwise MOMItOTING ittt 41

2. Failure Detection, Timeouts, and Retries ... 42
B. APPLICATION GROUP MONITORINGcccccciiiiinennnnnnnnnnnnnnnnnns 43
C. PHYSICAL CORE-SET CHANGE PROCESSINGccccvvivnennnnnnnn. 43
L.Coordinator 43
2. Typesof Changes 44
A Requests o e 44
b.Failures o i i e 45
c. Dynamic Reconfigurationsc.coiiiiiiiiiiiiiiiin. 45
3. Ordering and Priority of Change Processing 46
4. The Basic Change-processing Protocol ... 48
a. Timeouts and Retries For All Messages 50
b. Virtually Simultaneous Changescccoiiiieiiian. ... 54
5. Coordinator failure 62
D. APPLICATION GROUP CHANGE PROCESSINGccovevevneennnnecnnes 7
L MIS 71
2. MISBIVRIS .. e 73
E. PARTITION RESOLUTIONitiitiiniinrenicnesnstectoscscsesesascsncnanes 76
1. Dynamic Reconfiguration of Physical Core-set 76
a. Perceived Failures and Partitions 76
b. Automatic Reformation Using the Shared Multicast Group 76
c. Unique Names and Addresses of Partitioned Core-sets 78
2. Dynamic Reconfiguration of Application Groups 79
a. Reconfiguration Rulesccoiiiiiiiiiiiiiiiiniian . 79
V. CORRECTNESS ARGUMENTS cecscssssccsstennans cees 82
A ASSUMPTIONS . .iiiiiiiiiiiiitiitietestueceeseessesesscasecsessoracsssasssssns 82
B. TERMS AND DEFINITIONSiiiiiiiiiniiiiiiiinirrececinscecosenncansnnns 83
1.Change Events o i 83
2.Change Event Priority 83
JIsolation ... e 84
B GOSSIP ..ottt e 84
5.Group VIEW 84
A Definition i e 84
b.Remarks e 84
6. Group Partition e 8S

vi

a Definition i 85

b Remarks i 85

7. Group Membership Protocol 85

a Definition 85

b. Remarks oo 86

C. REMARKS ON THE PROTOCOL STRUCTUREcccccoviniiiinenannnnanns 86
D. CORRECTNESS ARGUMENTScciiiitiieitcesnscorecarsncencsencsncaes 88
LoClaim 1 88

2 ProOf 88

Q. Atthe coordinglorcciiiiiiiiiiiiiii i 88

b. At the non-coordinatoro, 89
3.CIaIM 2 89

4 Proof 89

S Claim 3 90

6. ProOf ... 90
T.Theorem 91

B Proof .. 91
V1. MEMBERSHIP SERVICE IMPLEMENTATION cecees 92
A.MULTICASTINGivituitenereseesossscessssssesnsesscscsosssssssssnsssncens 92
LIPMulticast 92

a. [P Multicast EXtensionscoooieuieuieiiaiiiiiiininan .. 93

b. IP Multicast Implementationc.cccciiiiiiiiin .. 95

2. Mcaster program 97

a. Mcaster Design Decisionscoouuiiuiiiiniiiiiiiinnnnn i, 97

b. Differences from IP Multicastccccooiiiiiiiuinannan..... 99

. Mcaster AIgorithmccooouiiiiiiiiia i iiiiiann .. 104

B. MSERVERiuitiiiiiiiiteteceescescsotsssssssocssssscsssescsscessassannes 106
1. Internal State and Data Structures e e 107

2. Algorithm and Explanation 112
C.MEMBER INTERFACEctitittteiiotncncancscscsccssscoscsasassansanane 116
1. Internal State and Data Structures e 117

2. Algorithm and Explanation 118
VII. CONCLUSIONS AND FUTURE WORK cesecescessane 120
A. CONCLUSIONSiiiiiiiiittictirestscesssscsecsssessscssesessssseassssnons 120

vii

B. FUTURE WORKiiiiiiiiiiiiiiieiireniettniieecessacesseossascesocnnes 120
APPENDIX .. iiiiiiiiiiiiiiiiiiiiiiitiiieieitiesetacersncncncncons 122
LISTOF REFERENCESciiiiiiiiiiiiiiiiiiriiiiiieieiecncncnns 176
INITIAL DISTRIBUTION LIST ...coiiiiiiiiiiiiiiiiiiiiiinieiennn 179

viii

b i Py S e iR e T

LIST OF TABLES
Table 1: Desirable Attributes of a Membership Service 6
Table 2: A Summary of Existing Membership Protocols 14
Table 3: Attributes of the Membership Service 15
Table 4: MS General Message Types i i 35
Table 5: MS General Message Fields 39
Table 6: Mserver Internal State Variables 109

ix

LIST OF FIGURES
Figure 1: Process Group Configurations 1
Figure 2: Membership Service and Application Process Groups 2
Figure 3: Protocol Layers 11
Figure 4: Global Hierarchy 17
Figure 5: Logical MS Hierarchy 19
Figure 6: Physical MS Hierarchy 20
Figure 7: Monitoring-set of Mserversl 22
Figure 8: Change-processing Core-set of Mservers ... 24
Figure 9: LAN Mserver Monitoringof MIs e 27
Figure 10: "Collapsed" MS Architecture 28
Figure 11: Mserver Messagest 36
Figure 12: Member Interface (MI) Messages ... 37
Figure 13: Membership Service General Message Format 38
Figure 14: Physical Monitoring Protocol, 4]
Figure 15: Reliable_receive Algorithm 42
Figure 16: Basic Two-Phase Change-Processing Protocol 48
Figure 17: Coordinator Basic Change Protocol ... 49
Figure 18: Non-coordinator Basic Change Protocol 49
Figure 19: Message Timeout, Retries, and Failure Detection 50
Figure 20: Reliable_multi_receive Algorithm 50
X

Figure 21:

Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:

Figure 42:

Lost or Delayed ACK Message During Initiate Phase 51
Lost or Delayed Commit Message 52
Lost or Delayed ACK Message During Initiate Phase 53
Augmented Reliable_receive Algorithm 55
Augmented Reliable_multi_receive Algorithm 57
Resolution of Overlapping Changes 58
Resolution of Virtually Simultaneous Changes 59
Virtually Simultaneous and Overlapping Changes 61
Election and Change-prc-essing Protocol 62
Broadcast Election Protocol 63
Compressed Election and Change-processing Protocol 65
Resume_change Algorithm 65
Coordinator Failure During Initiate Phase 66
Coordinator Failure with Lost /nitiate Message 67
Coordinator Failure in Commit Phase 68
Coordinator Failure with Lost Messages . .. 69
Coordinator Failure with Simultaneous Changes 70
Application Group Change Protocol 71
Submitting MI Application Group Change Protocol 72
Non-submitting MI Application Group Change Protocol 72
Non-core-set Mserver Application Group Change Protocol 73
Core-set Mserver Application Group Change Protocol 74

xi

Figure 43:
Figure 44:
Figure 45.
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:

Figure 64:

Application Group Change With Lost Submit Message 75
Appiication Group Change With Lost Direct Message 75
Application Group Change With Failed Coordinator 75
PartitioningofaCore-set 77
Partitioning of a Core-set, 78
IPMulticast 93
IP Multicast LayeredModel e 94
IP Socket Address Structure (Sockaddr_in) 96
Mecaster Data Structuresc... i 99
IP Unicast, Multicast, and Mcaster Using Separate Sockets 100
Extended Format Mcaster Message Structure 103
Muilticasting Using Extended Format Mcaster Messages 104
Mecaster Algorithm 105
Mserver Data Structures and Internal State 108
MserverCore Table 110
Mserver Core-set Corresponding to Core Table in Figure 57 110
Mserver Requests List 111
Mserver Application Groups List 111
Mserver Current and Previous Change Storage 112
Mserver Algorithm 113
Initial Parameters Message Format 115
MI Data Structures and Internal State 117

Xi

I

J

|

R o el cities Shianacalin

TV A BTN T SRR A b
.

Figure 65: Ml Algorithm

xiii

ACKNOWLEDGMENT

I would like to express my sincere gratitude and appreciation to Professor Shridhar
Shukla for the help he provided in the completion of this thesis. He has been not only an
advisor, but a mentor, collaborator, partner, and friend. @ Without his extensive
contributions, the accomplishments of this thesis would not have been possible.

I would also like to thank my family for their love and support while I was working
on this thesis. My wife Lynda, sons Daniel and Dayan, and daughter Brionne, endured my
ordeal very well, and kept me going through the difficult times. It is to them that I

dedicate this thesis.

Xiv

1. INTRODUCTION

A. BACKGROUND

Distributed networks of computers are being used increasingly to provide
computational power and services beyond the capabilities of a single computer system.
Distributed application programs specifically designed to utilize the distributed networks
of computers are gaining wide recognition as a powerful, flexible, and efficient method of
performing computation. Often, these distributed applications can be logically grouped to
allow more efficient and capable interaction. The process group paradigm has been shown
to be particularly well suited to organizing these distributed applications into a single
entity working toward a common goal. Examples of distributed applications that can
benefit from the use of process groups include multimedia teleconferencing, distributed
system management, remote monitoring and control systems, distributed reliable
databases, banking and brokerage services, distributed interactive simulation (DIS), as
well as a multitude of other applications. These process groups can be arranged in many
possible configurations to suit the needs of the particular application. Examples of various

process group configurations are shown in Figure 1.

Figure 1: Process Group Configurations

Process group oriented computation based on reliable communication primitives has
been shown to be particularly effective in a wide variety of environments [1, 2, 3, 4]. In
this paradigm, a group may correspond to a set of processes that must behave consistently
to provide a service or make a decision. Changes in the membership of the group may
occur due to the voluntary arrival and departure of members, or failures and recoveries
caused by the dynamic nature of the members. Therefore, a Membership Service (MS) to
manage the group membership is a fundamental building block for distributed applications
using the process group model.

To construct usable process groups, an MS must first overcome the group
membership problem (GMP); that is, providing consistent agreement on the membership
of the group at all members in spite of dynamic changes to the group [S]. This problem is
compounded by the asynchronous nature of the networks upon which the process groups
operate. Additionally, an MS must be scalable to support groups of any size and
distribution. The MS must be efficient, robust, and flexible to continue to provide services
to the client process groups under any circumstances. The MS must provide a uniform
interface to all applications, hiding the details of the process group management from the
users of the MS. An illustration of the logical representation of the MS is shown in Figure
2.

Service

Figure 2. Membership Service and Application Process Groups

B. SCOPE AND ORGANIZATION

This thesis presents the design of a globally scalable, decentralized group membership
service 10 manage application process groups operating in a distributed, asynchronous
environment. The scope of this thesis covers an investigation into current group
membership protocols and membership services; the identification of the design
requirements for an MS; the design of a hierarchical, scalable MS that meets all of the
design goals; the detailed specification of the protocols which form the MS; and a partial
implementation of an MS running on a campus network.

The organization of this thesis is as follows. The first chapter provides an
introduction to the needs and requirements of distributed application process groups and
the services provided by a membership service. The second chapter describes the
necessary and useful attributes of a full-featured MS, followed by a survey of current
group membership protocols and membership services. The third chapter provides a
detailed description of the hierarchical architecture and components of the MS. The
fourth chapter provides a detailed description of the five protocols required to implement
the MS, including algorithmic psuedo-code specifications of each. The fifth chapter
provides a proof of correctness for the MS protocols, ensuring that the MS meets the
stated design requirements. The sixth chapter includes an implementation of a set of
software utilities used by the MS and a partial implementation of the MS protocols. The
final chapter provides conclusions about the design of the MS and a discussion of future

work to be completed.

I1. ATTRIBUTES OF A MEMBERSHIP SERVICE

In this chapter the desirable and necessary attributes that a general purpose MS must
possess are described. Design goals for an MS which has all of the required attributes are
outlined. The network and user interfaces for an MS are defined. Finally, a survey of
current group membership protocols and services is provided, showing the need for a

full-featured MS.

A. DEFINITIONS AND ASSUMPTIONS

Before describing the attributes, requirements, and features of an MS, the operating
environment must first be defined. Certain assumptions about the functioning of the
underlying network and the processes which comprise the MS and application groups

must be made. These assumptions are outlined below.

1. The Network

Few assumptions about the service provided by the underlying networks and
internetworks are made. These networks are assumed to be asynchronous and unreliable,
with only connectionless, "best effort" datagram delivery provided, with unbounded
delivery time. Messages may be lost, delayed, duplicated, garbled, or arrive out of order.
Furthermore, the networks may suffer partitions, leading to the interruption in
communications between end stations for variable periods of time. It is assumed that a
network multicast capability is provided, such as IP multicast [6, 7, 8). This multicast
capability is assumed to provide rudimentary group management for the set of hosts which
share a common multicast address, including the creation and maintenance of a multicast

routing tree, and the detection and removal of processes which are not responding.

2. The Processes

Computer processes executing on distributed host computers throughout the
network are the entities which form the MS as well as the application process groups
which use the MS. It is assumed that the host computers and processes running on them
are unreliable and may fail at any time. The failure of the host computer or the process
running on the computer are indistinguishable from the perspective of the MS. 1t is
assumed that these failures will be fail-stop, or crashes [S, 9, 10, 11]. The computers or
processes will simply cease to function, with no malicious behavior.

The exchange of messages is the only way that distributed processes can learn of
each other's status. Due to the unreliable nature of the network described above, these
messages may never reach their destination, even though both sender and receiver are
functioning normally. For this reason, it is impossible for distributed processes to
distinguish between network partitions and the actual failure of other processes [5, 9, 10,
11]. Therefore, the failure of another process can only be perceived, never known for
sure. Perceived failures are detected by the lack of response within a timeout period.
Although these perceived failures may be caused by a partition of the network or the

actual failure of the process, they will be treated as if the process had actually failed.

B. DESIRABLE ATTRIBUTES OF A MEMBERSHIP SERVICE

A membership service must provide a suite of services to manage group-oriented
applications. Some of these services are explicitly invoked, such as calls to create new
process groups, to have processes join or depart the process group, or to split or merge
the process group. Other services are implicitly and automatically provided by the MS,
such as detecting and processing member failures within the group, detecting and
processing partitions of the network, ensuring unique group names within a given scope
and providing consistency of ordering of group membership changes at all members. Still

other services provide information to applications upon request, such as group name, size,

membership, view number, and automatic notification of group membership changes. A

membership service also has certain inherent attributes, such as scalability, fault-tolerance,

efficiency and flexibility. Table 1 lists several desirable attributes that a general purpose

MS should posses to fully support application process groups.

TABLE 1: DESIRABLE ATTRIBUTES OF A MEMBERSHIP SERVICE

Attribute

Interpretation

Significance

ship semantics

A: Adaptive status | Adjust timeouts based on local | Minimize wrongly perceived
monitor conditions failures

H: Hierarchical Multilevel membership Exploit hierarchy in WANSs,
protocol maintenance support very large groups

L: scaLability to Absence of centralized actions | Support of large, extensively
large groups in the protocol overlapped groups

M: Multiple network | Distribution over Novel applications
support heterogeneous networks

N: Non blocking Processing of continuous status | Enhanced performance for
reconfiguration | changes highly dynamic groups

O: topology-based | Use of physical topology and | Support of widely distributed
Optimization LAN features groups

P: network Merging after recovery with Increased applicability of
Partitioning required consistency Membership Service

R: Real-time Guaranteed detection and Support real-time applications
service processing latency for changes

S: multiple Simul- Quick update with weaker Multiple classes of service with
taneous changes | consistency overhead proportional to

X: fleXible member- | Availability of a range of quality

consistency semantics

It should be noted that some of these desirable attributes listed in Table 1 conflict
with each other. For example, adjustment of timeouts based on local conditions will
violate the real-time aspect of the MS. Non-blocking reconfiguration and merging after
partitions conflict with providing strongly ordered membership change semantics. Thus, a
fully-featured MS must permit the membership service user (MSU) to choose which of
these conflicting desirable attributes will have priority. The MSU is given the option of
choosing various Quality of Service (QoS) selections to configure the MS to the exact

needs of the application.

C. MEMBERSHIP SERVICE DESIGN GOALS

In this section the design goals of a full-featured MS are described.

1. Scalability

The MS must be completely scalable. Application process groups spanning a
single local area network (LAN) or the worldwide Internet will see the same level of
service. To accomplish this goal, the membership information for all groups must be
maintained hierarchically. Information about process groups will be distributed
throughout the hierarchy, so that each node need only store and process information for
the application groups that it supports directly below it. In this manner, the MS nodes that
have no member processes for a particular application are in no way impacted by the
processing of membership changes for this application. Additionally, the MS will use a
decentralized, hierarchical decision making scheme, since a centralized scheme is not
scalable. The decisions about membership changes to application groups will be made by
a set of distributed nodes located in the hierarchy, which will then propagate the decision
to all process group members. By using the hierarchical nature of the MS, the number of
nodes involved in each membership change decision will be small. Additionally, the level
of the set of nodes in the hierarchy will be different for most process groups, since the

span of most groups will be different. Thus, different parts of the hierarchy can function

concurrently, processing membership change decisions for different groups at different

levels without affecting the operation of the other parts of the hierarchy.

2. Efficiency

The MS must be efficient in the use of computational and network resources in
order to be scalable. Using the decentralized hierarchica!l structure, each node in the
hierarchy need only process and store a small part of the information needed to support all
application process groups.

Since hosts computers attach to the internetwork through a LAN, access to the
MS must be present at the LAN level at all times, even if there are no groups present on a
particular LAN. This will drastically reduce the latency for creating new groups and
permits the use of special LAN-level features such as hardware multicast. To provide this
continual access, a daemon process should be running on each MS capable host computer,
and an MS node should be running on a dedicated server for the LAN. The daemon
process provides an interface between the MSU and the MS.

Multicast messages must be used to process all changes, since multicasting is an
extremely efficient method for multiple processes to communicate. Additionally, the use
of a hierarchy provides a natural funneling effect for multiple messages propagating to
higher levels in the hierarchy. This is a form of concast [12], reducing the load on the

network at each level in the hierarchy.

3. Resilience to Failures and Partitions
The MS must provide membership semanticsthat handle failures of members as
well as the underlying network. Failures of either members or the network must be
automatically detected and processed, reforming the group without any direct intervention
by the application processes or the MSU. The MS must use a decentralized protocol to

eliminate any single point of failure. Multiple simultaneous failures of member processes

must be detected and processed without blocking, usually by "batching" the failures into a
single change to the membership.

4. Levels of Consistency

As identified in other group membership protocols [11, 13, 14], there are various
possible levels of consistency in the ordering of changes to the membership view at
members of a process group. Strong consistency guarantees that all members see exactly
the same changes to the group membership in exactly the same order. Weak consistency
guarantees that all group members will eventually reach the same view of the group
membership, but may hold disparate views for some period of time. Strong consistency
requires added complexity and overhead to ensure that all members have the same
ordering of membership changes, while weak consistency relaxes the requirements
required by strong consistency, and therefore is less complex. Strong consistency must
block all changes to the membership until the current change finishes, while weak
consistency may process concurrent changes. Thus, weak consistency generally has a
reduced latency over strong consistency. The MS must provide flexible membership
semantics for the application groups supported, allowing the MSU to select the level of

consistency needed for the particular application.

5. Membership and Name Scope Control

The MS must provide a means to limit the extent of individual application
groups. Without such a limit, all application groups could potentially use the whole MS
hierarchy, even if only a small part of the hierarchy was actually needed, creating a
bottleneck at the highest level in the hierarchy. The use of "scope control" parameters
limits the maximum span of an application group in the MS hierarchy to the referenced
level. Membership scope control limits the extent of group name searches whenever an
application group is referenced, such as a request to create a new group or join an existing

group. Name scope control limits the maximum span in the MS hierarchy which an

application group can cover. This parameter can be used when the application group is

created, and specifies the highest level in the MS hierarchy at which the group name
should be registered. References to an application group outside of the name scope will
not find the application group, and will propagate to the highest level in the MS hierarchy

unless limited by the membership scope control parameter.

6. Selectable Quality of Service

The MS must permit user selection of the conflicting desirable attributes
identified in Table 1. Some of the QoS selections which must be supported include: the
level of consistency in ordering of membership changes, methods of resolving partitions in
application groups, adaptive status monitor conditions to adjust the MS for local
conditions, designation of a limited scope for the application group, and user configuration
of the MS hierarchy for special purpose applications. An MSU must be able to select the
desired level of service by specifying certain parameters related to the QoS. These
parameters specify how application group partitions are handled, how the scope of a
group name is controlled, how the membership change information is ordered, the setting

of the failure detection timeouts, and the aggregation of multiple simultaneous changes.

D. MEMBERSHIP SERVICE INTERFACES

In this section the relation of the MS protocols is defined with respect to the Internet
Protocol (IP) protocol stack, which is the de-facto standard for internetworking
communications. Additionally, the application user’s interface and the MS system

configuration interface are described.

1. Network Protocol Layers
Figure 3 illustrates the relation of the MS protocols to the Transmission Control
Protocol/ Internet Protocol (TCP/IP) suite of internetworking protocols in the layer

below, and the application programs and upper-layer protocol modules in the layer above,

10

using the common layering model of depicting the hierarchical dependencies of network

protocols.

Application and Upper-Layer
Protocol Modules

Membership Service Interface
~ Member Interface (MI)

Membership Service mserver
Module

Transport Service Interface

: multicast
IP Multicast UDP emulator

Transport Module

IP Service Interface

IP Module !

Figure 3. Protocol Layers

2, User Interface
The application user's interface to the MS is provided through explicit system
calls to alter the membership or provide information about application process groups.
The MS is implicitly called to change the membership of application groups any time a
process failure or network partition occur. The following lists explain these system calis

and events in more detail.

11

a. Informational
1. Group View ("group"”)

Provide the current group view number maintained by the MS. Used by
application processes to guarantee all members have the most recent view of the group
membership.

2. Group Statistics ("group")
Provide current group view number and membership list maintained by

the MS.

b. Explicit Membership System Calls
1. Join ("group", membership_scope, name_scope)

Request by a new member process to join a group which may or may
not already exist. If the group does not presently exist, a new group is formed with only
this member. If the group does exist within the requested scope, the MS processes the
change and informs the application group of the addition. The membership_scope field is
used to specify the highest level in the MS hierarchy which should be searched for the
application group name during a join, thus limiting the time required to determine if the
group exists, and the impact on other groups. The name_scope field is used during the
creation of the process group to specify the maximum span the application group will ever
cover in the MS hierarchy. This field limits the extent of the search required whenever a
group is referenced.

2. Leave ("group", gid, membership_scope)

Request by member with group identity number "gid" to leave a group.

The departing member is able to leave immediately, without waiting for a response from

the MS.
3. Merge ("groupl”, "group2")

12

Request by member of groupl to merge group! and group2. Upon

successful completion, the union of the two groups will be formed, using group name
"group!"”, with a new group view. This request is the general form of the join request.
4. Split ("groupl”, "group2", g2MemberList)
Request by a member of group! to remove one or members of groupl,
listed in the parameter g2MemberList, and form a new group2 with these members. This

request is the general form of the leave request

¢ Implicit Membership Altering Events
1. Failures and Partitions
The MS will automatically handle perceived failures of group members,
up to and including all members. Automatic notification of member failures is provided to

the application group.

3. System Configuration Interface
The system calls used to configure the MS hierarchy are virtually the same as
those used by application groups, with the exception of calls to make certain nodes parent
nodes of others, thus creating the hierarchy. The configuration of the MS is performed by
a system administrator, using individual command line system calls or an MS configuration

program called MS mgr.

E. CURRENT PROTOCOLS

A summary of existing membership protocols is provided in Table 2. The category
headings are the same desirable attributes of a membership listed in Table 1. Finally, a
listing of the design goals and desirable attributes contained in the MS presented in this
thesis is shown in Table 3 for comparison.

Unlike any known group membership protocol, the group membership service
described in this thesis is totally scalable, handling process groups spanning a single LAN
to groups spanning the entire global Internet equally well. It provides for nested and

13

TABLE 2: A SUMMARY OF EXISTING MEMBERSHIP PROTOCOLS
Index to Columns: see Table 1.

Index to Entries: ~ ¥: Supported, X : Not supported,
E : Support possible with extensions, — : unknown

Protocol Required Principle A(HILIM(N|O|P|R|S|X

Network Feature

l’roErties
Asynchronous Environment:
Chang et al. unreliable token site Xl X X| X{ X X X Xv] X
{15} message
Bruso message versionnumbers, | E | X| X| X| X| X| X| XIE| X
(16} diffusion stable storage
El Abbadi ef a/. | unreliable virtual partitions | E | - v |v'| X| E |v'| X|v' | X
(17 message
Verissimo et al. | broadcast two-phascaccept | X| X| X| X| X! X| XIv|E| X
(18] LAN
Moser et al. ordered, ordinalnumbers | X| X| X| X| XIE| X X| XI X
[19] reliable
Riccardi et al. | unreliable reconfiguration |E |E|{E|E|v|E| X| X X X
{9} message manager
Mishraeral. | ordered, Psync & X| XIE|E| XIE|-| X|Vv |E
[20] reliable conversations
Auerbach ef al. | multicast multicast X E| X X - |vVIv]| XIv] X
{21] hardware sequences
Jahanian ef al. | unreliable crown prince E|E|E|E|--| XIE| X|v |V
(13] message
Golding er al. | unreliable time-stamped E|lviVvIiViV|iXlv]Xv] X
[22] message anti-entropy
Synchronous Environment:
Cristian bounded delay | attendance X X X Xiv| XI| XIv|E| X
151 lists
Ezhilchelvan | bounded delay | time-domain Xl X X XIv!| XI XIviiv] X
et al. |23]) multiplexing
Kim e al. TDMAbus | reception X| X X| X|v| X[XIv|v| X
{24} history
Rodrigues ef al. | exposed LAN | transmit-with- X X X XIv! X XvivIxX
[25] interface response

14

overlapping groups, as well as multiple groups residing on a single LAN. It also provides
various Quality of Service selections which permit individual groups to be configured for
an optimal balance between high quality with strong consistency semantics for group
membership, with the associated complexity and latency, and weaker consistency

semantics with reduced complexity and latency.

TABLE 3: ATTRIBUTES OF THE MEMBERSHIP SERVICE

Required Network
Properties

Principle Feature

Unreliable Decentralized
messages protocol based on
Bounded delay ordered membership | x|/ | v |v [v'| X[v v |V

message delivery

1S

II1. MEMBERSHIP SERVICE ARCHITECTURE

At the foundation of the scalable and efficient Membership Service lies the
architectural structure. The key to a scalable Membership Service is a decentralized,
hierarchical architecture. The Membership Service uses a hierarchical architecture
designed to follow the pre-existing physical topology of the subnetworks, networks, and
internetworks upon which the distributed application process groups that the Membership
Service supports will be running. This chapter describes the structure and composition of
the physical hierarchy of the MS and how this architecture supports application process

groups.

A. PHYSICAL HIERARCHY

The relevance of the architecture of the MS to the scalability of the MS is obvious
when the global scale is considered. There are presently over 120 million computers and |
million LANs world-wide, connected by bridges and routers to form global internetworks.
A centralized MS would require the central node to interact directly with all of these
computers distributed throughout the world, clearly an impossibility. By forming a logical
hierarchy, the interaction required by each node in the hierarchical tree is limited to those
nodes directly above and below, providing a uniform load for any node in the hierarchy.
The significance of the hierarchical structure is illustrated in Figure 4, where an n-ary
hierarchical tree is formed with eight levels of ten nodes each, providing support for
virtually all of the world's computers at the leaf level. With this hierarchy it is possible for
any leaf computer to communicate with the root level of the tree with only six
intermediate relays by nodes in the tree. If these intermediate nodes are logically
connected in a manner which closely follows their physical connectivity, the connection

from leaf to root level could require as few as six physical communication links.

16

Figure 4: Global Hierarchy

The other significant aspect of the hierarchical structure is that a node at each level of
the tree only need interface with the parent node above and the children nodes below. In
Figure 4, each node communicates directly with only ten children nodes and one parent
node. This is in comparison to the interaction in a centralized MS, where a single manager
node must communicate directly with all other nodes in the MS - potentially millions of

nodes managed by a single manager.

1. Mservers and Member Interfaces
The MS is comprised of two primary entities: Membership Servers (mservers)
and Member Interfaces (MI). The mservers are the heart of the MS, forming the nodes of
the hierarchy. The mservers are processes running on routers or host computers
distributed throughout the internetwork. The mservers provide connectivity, routing, and
record-keeping functions in a distributed, decentralized manner for the MS. The mservers
are primarily responsible for processing changes and providing information to the

members of both the physical hierarchy as well as the application process groups using the

MS. Typically, one mserver process runs on each router or name server in the network,
and one mserver runs on a dedicated host or the designated router for each connected

LAN. Application group processes interface with the MS through an MI process running

17

on each host computer. Each MI accepts requests for changes to or information about
application groups from the individual application member processes running on the
particular host computer. The MI then reliably relays these requests to the LAN mserver
for submission to the MS. The MI receives responses from the LAN mserver and reliably
propagates these responses to the application member processes that it supports. Each MI
is able to support numerous application groups and numerous individual member
processes from each application group, limited only by the available resources of the

individual host computer.
2. Organization and Configuration

a. Logical Hierarchy

The physical hierarchy of the MS is formed with mserver nodes logically
connected together to form an n-ary tree. The Mls are located at the leaf level of the
physical tree, at the host computer level, providing an immediate interface for the
application group processes running on the host computer. Figure 5 illustrates an example
logical hierarchy of mservers, Mls, and application group processes. The architecture
shown is a representative configuration for a small area encompassing a single institution,
such as a campus or business. In this case, the architecture shown is the configuration of
the Naval Postgraduate School (NPS), where the MS is under development. In Figure 5,
the set of mservers labeled NPS are servers at the root level, attached to the campus
backbone, representing the whole campus. At the next lower level are sets of mservers
representing individual buildings at the campus, labeled Spanagel, Root, and Ingersoll.
Each of the mservers in these sets are servers on LANSs located in the buildings. At the
next lower level are the Mls running on individual host computers on each LAN. The
LANs are labeled as ECE!, ECE2, SP1, and so on. Below the Mls are the application
group processes running on each host computer. In this example, there are four

application groups shown. Some Mls are shown supporting more than one group, each

18

with one or more members per host, while other Mls have no application groups to
support. The MI process remains resident on the host computer even if no applications

are running to provide quick access to the MS.

bl &

<

J B8 0B LHLLE

B mserver Application [@\... Application 1
Processes s ng
0 Mimost per host jon 4

Figure S: Logical MS Hierarchy

b. Physical Topology
The logical hierarchy shown in Figure 5 corresponds to the physical
topology of networks and computers shown in Figure 6. In this illustration, each
successively larger grouping of computers and networks is indicated by dotted lines and
the associated name, corresponding to the sets of MI or mservers shown at each level in

Figure 5.

NPS

T R I éa [" T
@ '] ®

Y ® ® YIRIERLE IBID
ROOT
ECEl ECE2 RO1 RO2 RO3
fl\ rl\ ’“f[fl\5 fl\ K fl\ rl\“ 1\ J\
OROBORC N CON ORORORNCY
oo/ loeel | @ ['lee| o od | o ° o |oe
0 1 mserver Pa | Member
oo /;”zchm " ™ Process 1 Inserface
"Y €s [Process

Figure 6: Physical MS Hierarchy

c. Semi-static Configuration
The mservers and Mls of the MS are manually configured into the desired
physical hierarchy by a local system administrator or cognizant authority. This
configuration is expected to be semi-static, normally changing only when additions and

deletions to the networks maintained by the administrator are made. The system

20

administrator will assign appropriate names for each set of mservers at each level,
corresponding to the multicast group which connects the set of mservers. The assignment
of a set name and multicast address are accomplished when the set of mservers are created

and joined together, using software calls to the MS.

d. Failures, Partitions, and Dynamic Reformation

Although the mserver and MI configuration is not expected to change very
often, there is still a possibility of the failure of the mserver or MI processes, the host
computers or servers upon which they are running, or partitions in the network. These
failures and partitions lead to a dynamic reconfiguration of the physical structure of the
MS, with the surviving mservers and Mls automatically reforming into partitioned sets.
Since any failure or perceived failure of an mserver is actually a virtuai partition of the
network, all failures and partitions will lead to the creation of one or more partitioned
subsets of the original set of mservers. Each partitioned subset of mservers will
correspond to that subtree of the physical hierarchy on one "side" of the partition; that is,
all of the mservers which are still able to communicate over the non-partitioned network.
Each reformed physical hierarchy of the MS will continue to function, providing service to
all application process groups with members still existing in the partition. The application
process groups which span the partitioned network will also experience a partition in their
membership. This condition will continue until the physical network partition is repaired,
at which time the physical hierarchy of mservers will either manually or automatically be
reformed to the original configuration. Once the physical hierarchy is restored, the
surviving application groups will also be reformed, if this is the QoS related to partition
resolution chosen by the application user at start up time.

In addition to the overall hierarchical structure of the MS, each set of
mservers in the physical hierarchy is also organized into a monitoring-set and

change-processing core-set. The LAN mservers also are responsible for monitoring the

2]

status of all Mls on the LAN. These organizations of mservers will be explained in the

next sections.
3. Monitoring Set

a. Definition and Purpose

The first criterion for an MS to be dynamically reconfigurable is to be able to
detect failures of the component entities. To accomplish this, each set of mservers in the
physical hierarchy is organized into a monitoring-set. The purpose of this monitoring-set
is to detect and announce the failure of any failed or perceived failed mserver in the set.
The detection method used is pairwise, peer-to-peer monitoring of the mservers in the
monitoring-set. Each mserver is responsible for monitoring one other mserver in the set,
and in turn is monitored by one other mserver. The monitoring is accomplished by the
monitor sending periodic Query messages to the monitored mserver, which then responds

with a Reply message, indicating normal status.

b. Structure
An illustration of a monitoring-set is shown in Figure 7. The pairs of
monitoring and monitored mservers are determined by the order in which the mservers

join the monitoring-set. Each newly joining mserver is connected into the pair-wise

2\

~___ 7

Figure 7: Monitoring-set of Mservers

22

T —

monitoring sequence as the mserver monitored by the highest rank (oldest) mserver in the

set, and will begin monitoring the previously lowest rank (youngest) mserver.

¢. Failure Detection

As with nearly every message sent within the MS, the monitor will set a
timer upon sending the Query message. If a Reply message is not received before the
timer expires, the monitor will suspect the monitored mserver of failure. One or more
retries will be conducted, and if the monitored mserver does not respond in this time, it
will be declared failed by the monitor, which will then announce the failure to all other
mservers in the set. The mserver detected failed may have actually failed, or may be
unable to communicate with the monitor; in either case, it will be considered failed by all

mservers which receive the monitor’s announcement.
4. Change-processing Core-set

a. Definition

A second organization applied to the set of mservers at each level in the
hierarchy is that of a change-processing core-set. This set of mservers is responsible for
processing all membership change requests submitted by the application process groups
that it supports, as well as enacting changes in the physical hierarchy. The change
processing involves reaching a consistent agreement amongst all core-set mservers about
the change being submitted, then to reliably propagate this change back to the application
process members, who are then guaranteed to have a consistent view of the changed

application group membership.

b. Purpose
This organization is termed a core-set because it is the small set of mservers
at that "top" level for the group in the physical hierarchy which connects the particular
application process group supported. For example, the set of mservers labeled NPS in

Figure 5 serve as the core-set for all four application groups, since each application group

23

has members distributed on all LANs. The sets of mservers at lower levels in the
hierarchy will not process these application membership changes, but will submit them to
the core-set, then relay the results back to the Mls. In this manner, the hierarchical
structure of the MS is used to reduce the number of mservers that cooperate to process a
membership change for an application group to those in the core-set for that group. This
organization leads to very efficient and fast processing of membership changes for groups
of any size and distribution, since only the core-set of mservers will be processing the
change. It also provides the necessary scalability for the MS, since application process
groups of any size or distribution will have a small core-set of mservers processing the
membership changes, and thus will experience nearly the same small processing time. The
primary difference in membership change processing times for different application groups
will be caused by the level of the core-set in the physical hierarchy. A core-set at a higher
level will have more intermediate relaying mservers between it and the application member

processes, thus creating a longer transmission path.

parent

Figure 8: Change-processing Core-set of Mservers

24

c. Structure

An illustration of a core-set of mservers is shown in Figure 8. The mservers
in the core-set are connected in a multicast tree, using a common multicast group to
multicast a change message from one mserver to all others at once. For each membership
change request submitted to the core-set, a coordinator is chosen. The criteria for
selecting the coordinator depends on the particular type of change and how it was
submitted to or detected by the core-set. The fact that the coordinator is not a fixed
member of the core-set, but instead varies from change to change, is a powerful feature of
the MS. Since the coordinator does not exist as such unless a change is actively being
processed, there is no need to ensure an operational coordinator exists when no change is
being processed, thus greatly reducing the core-set overhead.

Each set of mservers in the physical hierarchy is configured as a core-set.
This serves the dual purpose of having a core-set readily available for use by application
groups at any level in the hierarchy, and allowing each set of mservers to process
membership changes among the mservers of the core-set locally. Thus, each level of the
MS hierarchy is responsible for managing the mservers at that level only. Changes to the
membership of the core-set are processed in exactly the same manner as membership
changes submitted by application groups, with the exception that these changes directly
affect the core-set membership and are not propagated outside of the core-set.
Membership changes to the core-set are generated by failure detections from within the
core-set or by change requests sent to the core-set when manual configuration of the MS

physical hierarchy is conducted by the system administrator.

d. Change-processing Sequence
The basic change-processing sequence uses a modified form of the three-way
handshake often seen in unreliable networks for reliable message delivery. The

coordinator initiates the change processing with a multicast to all core-set mservers,

25

collects acknowledgment (ACK) messages from all, then multicasts a final message for all
to commit the change. Timeouts and retries are used by mservers waiting to receive AC'Ks
or Commit messages from other mservers to ensure that continual progress is made
toward completion of the change. As with the monitoring scheme, if the correct reply is
not received from an mserver after the timeout period and all successive retries, then that

mserver is declared failed and the failure is announced to all other mservers in the core-set.

e. Multicasts and Failure Detection

The use of timeouts and retries on change-processing messages creates a
secondary but essential method of detecting mserver failures. Since mserver monitoring
uses unicast messages and change-processing uses multicasts, it is possible that a network
partition could occur that affected only multicast message delivery between one or more
mservers. The inability of mservers to communicate all necessary data creates a virtual
partition between the mservers. Without the use of this secondary detection method, it is
possible that one or more mservers could be functioning perfectly well, sending the
required monitoring messages, but unable to respond to change-processing messages, thus
creating a deadlock situation. The timeout and retries on change-processing messages
ensures that an mserver unable to communicate will be detected failed, and the remaining
mservers will be able to complete the change in a timely manner. In the event of a
coordinator failure during the change processing, a distributed election is conducted and a

new coordinator is elected to continue the original change.

5. LAN Mserver Monitoring
Due to the high bandwidth, low latency, hardware multicast capability, and
limited number of Mls to monitor, the mserver representing each LAN uses a simple
polling scheme to conduct status monitoring of the Mls and host computers on the LAN.
Each MI on the LAN is successively polled with a Query message by the LAN mserver.

The MI responds with a Reply message indicating normal status. Timeouts and retries are

26

used to detect a non-responding Ml, declare that MI failed, and announce the failure. A

depiction of the LAN mserver monitoring scheme is shown in Figure 9.

Figure 9: LAN Mserver Monitoring of Mls

6. Hierarchical Structure

a. Collapsing the Tree
The final organization of mservers and Is involves forming the

monitoring-sets and core-sets of mservers into the physical hierarchical structure used by
the IS, with the Is at the leaf level. All core-sets are also monitoring-sets, thus

providing the failure detection needed by a core-set to manage the mserver membership
locally. As shown in Figure 5, each mserver in the hierarchy has either a set of children
mservers or I's. All mservers and I s also have a parent mserver, except the mservers

at the highest level of the hierarchy. To create this physical structure, the logical hierarchy
of Figure 5 is "collapsed”, so that each parent mserver becomes a member of the core-set
of children mservers below it, as well as a member of the core-set of peer mservers. Thus,
each mserver above the lowest level in the hierarchy has a dual membership in the

"child-set" as well as the original core-set of mservers. Figure 10 illustrates this structure.

27

B mserver

8 Miskost

Figure 10: "Collapsed" MS Architecture

b. Parent Mservers

A comparison of the logical MS hierarchy shown in Figure 5 with the
physical MS hierarchy shown in Figure 10 shows the same sets of mservers and Mls.
However, the sets can now be identified as change-processing core-sets, linked to the level
above by the dual membership of the parent mserver. Having the parent mserver as a
member of the child-set has two primary advantages. First, the parent mserver is part of
the child monitoring-set; thus, the child-set will immediately learn of the failure of the
parent mserver by monitoring. Second, the parent mserver takes part in all change
processing conducted by the child-set; therefore, it will learn of any changes in the
membership of the child-set directly. Together, these two points ensure that "vertical
monitoring” is conducted in the hierarchy. This provides the means to ensure that a failure
or partition between levels in the MS hierarchy will be detected, allowing the MS to

reform as necessary.

28

B. APPLICATION GROUPS

Support for application process groups is the primary reason for the MS. The MS is
responsible for managing the membership of the application process groups and providing
services to the application process groups. The following sections describe how the MS

accomplishes this.
1. Application Groups and the Physical Hierarchy

a. Scalability
The application groups consist of processes running on host computers
distributed throughout the networks supported by the MS. As shown in Figure 2, the MS
provides the necessary services to make an application consisting of numerous distributed
processes to appear as a unified application running at a single site. Because of the
scalability of the underlying MS architecture, the application process groups are
completely scalable in number and distribution of processes, with the end result being

complete transparency of the distributed nature of the MS to the service users.

b. Consistency

The primary service that the MS provides application groups is a consistent
view of the group membership at all members, as well as a consistent ordering of changes
to the membership of the group at all members. These consistency guarantees ensure that
a process group member either acquires the same consistent view as all other members of
the group eventually, or is excluded from the membership of the group. The term
"eventually” refers to the asynchronous nature of the environment, leading to delays at
some sites. The MS allows for reasonable delays, thus ensuring that all surviving
processes will receive the revised group view. Using this guarantee of consistent
membership at all processes, the application can safely make certain assumptions about the

member processes. The application can expect that processes with the same group view

29

number have seen the same sequence of membership changes, and currently have the same
view of the membership of the group. Using this knowledge, the application can decide to
accept or reject messages from other application processes depending on the included
group view number. The guarantee of consistent membership can be used as the
foundation upon which to build many distributed applications.

The MS provides consistent ordering of membership changes to application
groups by ensuring that only one change is ever processed at a time in the core-set of that
applic>*” sroup, and that all active member processes eventually receive this change.
The sei. ..ed change is committed by all core-set mservers, then reliably propagated to the
MiIs, and finally, to the distributed application member processes. The MS provides the
guarantee that an application member process either receives each revised group view or is
detected as failed, and excluded from the group. In this manner, all surviving application
member processes are guaranteed to have exactly the same ordering of membership

changes.

c. Naming

The MS manages the names of all application groups using the MS.
Application group names are guaranteed unique within a predetermined scope. When an
application group is created, the software call from the application to the MS includes as a
parameter a level in the MS physical hierarchy, under which the application group name
will be guaranteed unique. This name-scope parameter is either the actual name of the
core-set or a level number above the MI level in the physical hierarchy. For example, to
guarantee an application group name of "application1" as unique under the scope of the
NPS core-set from Figure 5, the name NPS or the level number 2 would be used as the
name-scope parameter. The name-scope level must be at or above the core-set level for
the application.

With the creation of each new application group, the name-scope parameter

is checked at each level in the mserver hierarchy up to and including the name-scope level.

30

If the name already exists, the creation of the new group is refused, and an error code is
returned to the calling application. If the name is not found, then it is registered at the
name-scope level of mservers and at each level in the hierarchical tree of the application,
and a successful group creation is reported to the calling application. When new
application member processes at distributed locations wish to join an existing application
group, a join request is submitted via the resident M1, then propagated up the hierarchy
until either an mserver is located with the application name stored or the highest level in
the physical hierarchy is reached and the application name is not located. If the desired
application group name is located, the new member is joined into the application group
through the normal change-processing sequence, and a successful join is reported back to
the requesting process. If the name is not located, an unsuccessful join attempt is reported
back. Through judicious use of the name-scope parameter, application names may be

used freely with little concern about duplicate name usage.

d. Membership Scope Control

An additional feature provided by the MS is the ability for an application to
decide at what level in the MS physical hierarchy to limit the scope of the application
group. By providing a membership-scope parameter with the creation call for a new
application group, the application guarantees that the span of the application's
membership will not exceed the given core-set level in the physical hierarchy. In return,
the MS is able to provide more efficient service by limiting the scope of application group
name searches to the membership-scope level and below. Instead of propagating every
unsuccessful application group name search to the highest level of the MS hierarchy, the
name search will cease at the membership-scope level. Without use of the
membership-scope, it might be possible for a bottleneck to form at the "top" of the MS

hierarchy.

31

2. Member Interfaces

a. Purpose
As previously described, the Mls provide the interface between application
group member processes and the MS physical hierarchy. They accept application
membership change and information requests from application processes and submit these
changes to the mserver hierarchy for processing. When the change or information data is
returned, the MI passes the data to the requesting member processes.
As shown in Figure 9, each Ml is running on an individual host computer. Each
MI is capable of interfacing multiple application groups, each with multiple members, with
the LAN mserver and the MS. Each MI maintains a list of all application groups it is
managing as well as all member processes from these groups running on the host
computer. Thus, the membership information for each application group is maintained in a
decentralized, scalable manner. When an application member process needs to
communicate with another application member process on a different host, it submits a
request for addressing information to the Ml. The MI relays this information request to
the MS, which obtains the desired information from the Ml managing the desired member
process, and relays the information back to the requesting MI and application member

process.

b. Application Member Process Monitoring
The Mls monitor the application member processes in exactly the same
manner that the LAN mserver monitors the Mls on the LAN: using polling. In the same
manner, non-responding application processes are detected failed, the failure is

announced, then submitted to the MS for an application group membership change.

32

3. Application Group Change Processing

As previously discussed, application group change processing begins with the
submission of a change request to the host Ml. This request is relayed to the core-set of
the application, which conducts the mserver change-processing procedure, resulting in all
core-set mservers committing the change. Each core-set mserver then reliably relays the
change directive down the hierarchy to the MI, and then to the requesting application
process. When the change is submitted by the MI, a timer is set to ensure a timely
response to the change. The MI waits for the returning Direct message from the LAN
mserver. If the timer expires before receiving the Direct message, a query message is sent
to the LAN mserver requesting the status of the change submitted. The LAN mserver will
respond with a Wait message if the change is still being processed, causing the MI to wait
for a period before querying the mserver again. If the MI completes all timeouts and
retries and still has not received a reply from the LAN mserver, it detects the LAN
mserver failed and announces the failure. In the same manner, each intermediate mserver
also sets a timer for a response from the next higher level mserver. A non-response leads
to a partition in the physical hierarchy. To ensure reliable transmission from the core-set
to the application process, each intermediate mserver and MI send an ACK message back
to the mserver above upon receipt of the Direct message. Timeouts and retries are again
used to detect failures and partitions. At the end of the application change processing
sequence, every application member process is guaranteed to have received the change
message or to have been detected as failed.

33

IV. MEMBERSHIP SERVICE PROTOCOLS

The previous chapter described the component entities of the MS: the mservers and
MIls. The organization of the mservers and MI into the MS physical hierarchy was
described in detail, as well as their basic functionality. This chapter describes in detail the
protocols used by the mservers and MI to implement the MS, and the general format of
messages used to exchange membership information between mservers and MI.

1. General Message Types

The general message types used by the MS and descriptions of each are listed in
Table 4. There are three general classifications of messages: Monitoring, Initiate, and
Change Processing. Many of these messages are used for more than one purpose, such as
processing changes to the physical hierarchy of mservers and MI as well as changes to
application process groups. The Monitoring messages are used by mserver in the
monitoring-set to conduct pairwise peer-to-peer monitoring, by the LAN mserver to
monitor the Mls on the LAN, and by the MI to monitor application process members.
The type of monitoring being conducted is determined by the members involved and the
context of the message used. The Initiate category of messages are used to initiate a
change for either the physical hierarchy or an application process. The Join message is
used to join a new mserver to an existing core-set of mservers, create a new core-set with
one mserver, to join a new application member process to an existing group, or to create a
new application group. The Leave message allows a voluntary departure by an mserver
from a core-set or an application process from the group. The Split and Merge message
types are the general form of Join and Leave, allowing multiple mservers or application
processes to join or leave a core-set or application group, respectively. The Add parent

and Del parent message types are used by an existing core-set to adopt or remove a

34

TABLE 4: MS GENERAL MESSAGE TYPES

Message T Description
Monitoring Used by mservers and MI to determine status of others
Query Query status of another mserver or MI
Reply Reply to Query
Initiate Initiate a physical or application group change
Join Mserver join a core-set or application process join a group
Leave Mserver leave a core-set or application process leave a group
Split Split from core-set or group to form a new set or group
Merge Merge separate core-sets or application groups into one
Add parent Core-set add an mserver as parent
Del parent Core-set remove the existing parent mserver
Fail Mserver, M1, or application member process detected failed
Coord Fail Mserver coordinator of current change detected failed
Submit MI submit change to core-set (same types as Initiate)
Direct Core-set change directive to Mls (same types as Initiate)
Process Change |Used to process a physical or application group change
ACK Acknowledge Initiate or Direct messages
Wait Wait to begin processing change or for next message in change
Commit Commit the current change
Msg Query Query mserver for status of next message expected in change
Init Initial parameters message from coordinator to joining mserver

parent mserver. This action is the primary function used to create the hierarchy of

core-sets. The Fail message type is used to announce the failure of an mserver or

application member process and initiate the change to remove the failed member from the

core-set or application group. The Coord Fail message is used to announce the failure of

the coordinator mserver for the current change being processed. This message will

prompt the election of a new coordinator, which will complete the original change. The

35

third category of general message types are those actually used to process membership
changes to a core-set of mservers or an application group. The ACK message is a general
acknowledgment message used to indicate successful reception of an /nifiate or Direct

message. The Wait message is used by the coordinator of the current change or by an

parent
mserver

T

Submit mserver
application group physical hierarchy | application group
change and information [change and information| change and information

messages messages
peer mserver peer mserver
monitoring Repl monitoring
messages & se messages
core-set mserver core-set
ch.nge. ° Chmge'
processing ¢ processing

messages messages
nuerver
physical hierarchy
change and infomaﬁon
Reply ire

Submit mmagu ct

application group application group
change and information momtonng momtonng change and information

/llliftlfﬂ ... eee MESSREES MESSALES

sl
child-set mservers or Mls I

Figure 11: Mserver Messages

mserver propagating a Submit message to inform querying mservers that a there is a delay
in completing the current change and that they should wait for a period for the next
expected message. It is also used by a core-set mserver to inform another mserver

attempting to initiate a new change that the current change is not yet completed, and the

36

new coordinator should wait a period before beginning the next change. The Commit
message is sent by the coordinator to inform all core-set mservers that it is safe to commit
the current change as the new group view and to propagate this view to application

processes as needed. The Msg (Query message is used by an mserver or Ml to query

LAN
mserver
T\
Submit Reply Query Direct
application group MI Ml application group

change and information / monitoriag monitoring \ change and information
messages messages messages messages

[4
MI

7 f \

Reply application group Q¥ery
!m . change and information Ml .
messages monitoring
messages musai

/

application group member process

Figure 12: Member Interface (MI) Messages

another mserver about the status of the message for the current change expected from the
queried mserver. The mserver receiving the Msg Query will usually respond with a Wait
message or the expected message, if it is determined that the message was lost. The
Submit message is used by an MI submitting an application group change to the LAN
mserver, then by each mserver in the hierarchy to propagate the change request to the

application core-set. The Submit is in effect a remote /nitiate message, and has the same

37

category of types as an /nitiate message. The Direct message is used by the core-set
mserver with application members at their leaf level to propagate the committed
application change down the hierarchy to the Mls representing the application group, and
also has the same category of message types as an /nifiate message. Figure 11 illustrates
the messages sent to and received by an mserver, while Figure 12 illustrates the messages

sent to and received by an MI.

vers | checksum
group_name
authentication
group_view sender_gid gid | gid |
msg _type subject_gid addr addr
subject_addr rank rank
subject rank nexto nexto,
exclude list —
excl list len | subj list len | ﬁ gid | id
subject list *— addr addr
data_len 11 rank rank
data .—L nexte- nexte|-3
" data string"

Figure 13: Membership Service General Message Format

2. General Message Format
The general message format used by the MS is shown in Figure 13. An
explanation of the meaning of each message field is provided in Table 5. The exclude and
subject lists shown in Figure 13 are queues maintained by each mserver, which are
included with certain types of messages. Each element of these lists contains the minirnal

amount of information to uniquely identify an mserver or application process, when

38

TABLE 5: MS GENERAL MESSAGE FIELDS

I Message Field ‘ Ducriztion

vers MS version number

checksum used for message error detection

group_name core-set or application group name

authentication |used for group security

group_view current core-set or application group view number

msg_type message type

sender_gid message sender's group identification (gid) number

subject_gid message subject's group identification (gid) number 7
subject_rank seniority based rank of mserver or application member process
exclude_list list of mservers to be excluded from core-set due to failure
excl_list_ien number of mservers in exclude_list

subject_list list of subjecv. for a Merge or Split, or failed mservers or members
subj_list_len number of mservers or members in subjeci_list

data general purpose data field

data_len length of data included with message

combined with the information about the core-set or application group contained in the
message. The lists are used to communicate information about sets of mservers or
application processes. The exclude list serves a dual purpose: to ensure that failed
mservers are not included in the communications of the core-set, and to inform other
core-set mservers of mservers perceived failed before they are actually removed from the
core-set. Beause the network multicast capability assumed by the MS is unable to
dynamically tailor the receivership of each multicast message, a filter mechanism must be
used to ensure that unintended mservers do not receive the current message. An mserver
which is detected as failed is added to the exclude list of the current message sent by the

detecting mserver. Mservers receiving this message will cease all communications with

39

]

the excluded mserver. If an mserver is still functioning and receives this message with
itself listed in the exclude list it will immediately cease all communications with all
mservers in the core-set, with the possible exception of other mservers in the exclude list,
with which it will attempt to reform a new core-set. This method of "piggy-backing" the

detected failure of mservers with another message is referred to as "gossip" [9].

3. General State of Mservers and Mls
The MS maintains information about the physical hierarchy and application
groups in a decentralized manner. Individual mservers and Mls need only maintain the
information necessary to perform their required functions. This decentralized storage of

MS information is essential to the scalability of the MS.

a. Mservers

For an mserver, the information stored about the physical hierarchy includes
the gids, ranks, and addresses of other mservers in the core-set and child-set of mservers
of which it is a part; the monitor, and monitored mservers for each of these sets of
mservers; the parent mserver of the core-set; information about the current and previous
changes processed; and queues of mservers detected failed , received change requests, and
excluded mservers. Each mserver also maintains information about the application groups
that it supports. This information includes a list of application groups supported by the
mserver, which children mservers are in the application group's hierarchy; and whether the

mserver level is the core-set, memberhsip-scope, or name-scope level of the application.

b. Mis
Each MI must store information about the application groups and their
members that it is supporting on the host computer, as well as the address of the parent

mserver Any other required information is obtained through the MS hierarchy.

40

4. Physical and Application Group Protocols
To perform the various functions described, mservers and Ml use five primary
protocols. These protocols are: the physical monitoring protocol, the application group
monitoring protocol, the physical core-set change-processing protocol, the application
group change-processing protocol, and the network partition resolution protocol. Each of
these protocols are described in detail in the following section, using psuedo-code

algorithm listings and event diagram illustrations.
A. PHYSICAL MONITORING PROTOCOL

1. Pairwise Monitoring
As described in the previous chapter, mservers in the physical hierarchy are
arranged into monitoring-sets for the purpose of detecting mserver failures. Within these
monitoring-sets, the mservers conduct pairwise, peer-to-peer monitoring. The monitoring
mserver periodically sends a Query message to thé monitored mserver, which responds
with a Reply message indicating normal operation. The algorithm for this physical

monitoring protocol is shown in Figure 14, with the description following.

Monitoring mserver

/* when monitoring timer has expired */

1. form_message ((Query, current_change, exclude_list)

2. send_message (Query_message, monitored mserver)

3. messg = Reliable_receive (Reply_message, Query_message)
4 if (messg !'=Reply message) /* failed mserver */

5. declare the monitored mserver failed

6. else

7. reset monitoring timer

Figure 14: Physical Monitoring Protocol

41

Figure 14 shows the procedure used by the monitoring mserver. In lines 1 and 2
the Query message is sent to the monitored mserver. Line 3 uses a function called
Reliable receive, explained in the next section, which a uses timeouts and retries to ensure
the Reply message is received in a reasonable period of time. Lines 4 and 5 detect the
monitored mserver failed if it did not respond to the Query. Finally, line 7 resets the

monitoring timer to repeat the process after a suitable period.

2. Failure Detection, Timeouts, and Retries

The primary means of detecting an mserver failure through monitoring is the use
of timeouts and retransmissions of the Query message. If after a preset number of
timeouts and retries the monitored mserver still has not responded, it is assumed to have
failed. The Reliable_receive function in Line 3 of Figure 14 performs this timeout and
retry sequence. The function is termed "reliable" because it ensures a reliable
communication over a single link: that is, the monitored mserver either responds in a
reasonable period or is determined to have failed. The algorithm for this function is listed

in Figure 15.

Reliable_receive (expected_messg, query messg)

/* returns the received message */

1. set_timer (timeout)

retries=n

while ((timer not expired) and (messg != expected_messg))
receive_message (messg)

if ((messg = expected_messg) and (retries > 0))
retries = retries - 1
send_message (query messg, destination)
set_timer (timeout)
goto 3.

0. retum messg

R RNV IF RN

—

Figure 15: Reliable_receive

42

Line | and 2 initialize the function. Line 3 begins the main reception loop. Line

4 is a timed receive function, which returns the received message immediately upon
reception or times out waiting and returns a NULL message. The main loop is executed
until the expected message is received or the main timeout period expires. Lines S
through 9 perform the retry sequence. If the expected message is received the function
returns immediately, otherwise, the function times out and returns whatever message, if
any, was received. By examining the returned message, the monitor is able to decide if the

monitored mserver has failed.

B. APPLICATION GROUP MONITORING

The protocol used by an MI to monitor the status of the application member
processes that it is interfacing is exactly the same as that used by the LAN mserver to
monitor the Mls running on the host computers of the LAN. The MI periodically queries
each application member process, using the Reliable_receive function, and declares any
application processes not responding as failed. Figure 9 shows the arrangement of LAN

mserver, Mls, and application member processes.

C. PHYSICAL CORE-SET CHANGE PROCESSING

At the heart of the MS is the ability of a small set of mservers to make a consistent,
mutually agreed upon decision about membership changes to physical sets of mservers and
application groups of any size. This section describes the types of changes processed, the
basic change-processing protocol used by a core-set to commit these changes, and

additional protocols used in the event of failures of mservers within the core-set.

1. Coordinator
The coordinator is the core-set mserver responsible for coordinating the
processing of the current membership change. One of the strengths of the MS is that any

mserver can become the coordinator, either initially upon detecting or receiving a change,

43

or following the failure of the current coordinator. Also, the coordinator only exists in
that capacity while the current change is being processed, when there are no membership
changes to process in a core-set, there is no coordinator. The coordinator for each change
is determined by a combination of the type of change, which core-set mservers detect or
receive the change, and a priority associated with each change. In addition to determining
which mserver will act as coordinator, these critena also ensure that only one change at a

time is committed by a core-set.

2. Types of Changes
There are three primary types of membership changes processed by a core-set of

mservers: requests, failures, and dynamic reconfigurations.

a. Requests

Requests are voluntary, planned membership changes, submitted to the
core-set for processing by an application process, membership service user, or system
administrator. Change requests for the MS physical hierarchy may be of any type listed in
Table 4, with the exception of Fail and C'oord Fail. Application group change requests
may be of any type used for physical change requests except Add parent and Del parent.
Physical change requests are multicast to a specific core-set in the hierarchy by a system
configuration call, usually invoked by a system administrator during manual configuration
of the MS hierarchy. The physical change request is received by all mservers in the
selected core-set. Each receiving mserver queues the request, to be processed when other
higher priority changes have completed processing. Application group change requests
are submitted to the resident MI process on the host computer by the application or the
MSU. The MI then propagates the request to the core-set mserver above it in the
hierarchy. The receiving core-set mserver queues the request to be processed when other

higher priority changes have completed processing.

b. Failures

The second primary type of membership changes are detected failures.
These detected failures may be the result of the actual failure of an mserver, Ml, or
application process, or the host machines upon which they are running. Additionally,
network partitions will be perceived as failures of the partitioned mservers, and will lead to
the processing of failures and reformation of the partitioned subsets of mservers and
subgroups of application processes. The partitioning of the MS physical hierarchy leads to
a partitioning of the application groups residing on this hierarchy. The MS automatically
reforms both the physical hierarchy and the supported application groups in the event of a
network partition. Failures detected or received by a core-set mserver are queued and
processed according to their priority. Multiple failures queued at a core-set mserver are
processed all at once, in a "batched" manner. This greatly reduces the time required to

reform physical core-sets or application groups.

¢. Dynamic Reconfigurations

The final type of changes are the result of automatic actions taken by
core-sets of mservers. As part of the processing of multiple failures caused by a network
partiticn, a core-set is often partitioned into two or more subsets. After the reformation
into subsets has occurred, these sub-core-sets attempt to reform into the original core-set
by sending messages to the other subsets of mservers. Since the sub-core-sets still share
the same multicast address, once the network partition is mended, the other sub-core-sets
receive these refor tion messages. Upon learning of the existence of a sub-core-set from
the original core-set, the partitioned subsets of mservers reform into the original core-set
automatically. In addition to reforming the physical core-set, all application groups which
were partitioned and are still functioning are also reformed. The reformation process for
both physical core-sets and application groups merges the currently existing membership

of each, taking the union of all subsets or subgroups, and making the reformed core-set or

45

application group membership the current view. In the event that the network partition is
not repaired in a predetermined period of time, the partitioned subsets of mservers will
abandon their attempts to reform the onginal core-set, and will create a new multicast
group with only the current core-set mserver included.

Another type of dynamic reconfiguration occurs when new members join an
application group, causing the span of the application group to increase beyond that
presently covered by the current application core-set. In this event, the application
core-set must be moved from the present level in the physical hierarchy to a higher level
covering the new span of the application. This new level must be at or below the
name-scope and membership-scope levels of the application gfoup. if these levels were
designated when the application group was created. The MS automatically moves the
application core-set to the new level. In a similar manner, the departure of application
member processes may lead to a reduced span of the application. An application core-set
must have at least two mservers with application members in their subtrees; otherwise,
there is no need to have the application core-set at this level in the hierarchy. If the
application core-set is reduced to only one mserver supporting an application, the
application core-set will automatically move down to the child-set of this mserver.

The repositioning of an application core-set is initiated by the set of mservers
detecting the need to move the application core-set. Messages are exchanged between the
old and new core-sets and a change involving the join or departure of the instigating
application member is processed along with the change in application core-set level by
both core-sets. After committing the changes, the internal state of all mservers in both

core-sets is changed to reflect the new application core-set level.

3. Ordering and Priority of Change Processing
A key issue associated with processing membership changes to sets of mservers
or application groups is the ordering of changes committed by the core-set. As previously

described, to guarantee consistent ordering of membership changes at all mservers in the

46

core-set, only one change may be committed at a time. However, it is possible that more
than one membership change may be submitted to or detected by the core-set at one time.
Each receiving or detecting mserver in the core-set will attempt to become the core-set
coordinator and initiate the change it received or detected. These multiple change
initiation attempts are referred to as "virtually simultaneous”, since they have all been
initiated before the core-set has reached a consistent and uniform decision on the current
change to process. If the core-set had already chosen a current change and coordinator, a
newly initiated change would be processed after completion of the current change.

To resolve these virtually simultaneous changes and select only one change to be
processed, a prioritization scheme is used. This prioritization scheme uses the type of
change and the gid and rank of the subject of the change to decide which change will be
processed by the core-set. The highest priority is given to any current change being
processed by the core-set; that is, a change which has been consistently accepted by all
core-set mservers. It is essential that such a change progresses to completion at all
core-set mservers, otherwise, the possibility of inconsistent membership views exists if
some mservers commit the change while others do not. The next higher priority is that
physical changes always have priority over application group changes. This is because it is
important to ensure a complete and whole MS before attempting to change the
membership of an application group using the MS. Once these decisions have been made,
the priority of the change is determined by the rank of the subject of the change. The only
exceptions to this rule are for the failure of the coordinator of the current change or -
Join. The failure of the coordinator has priority over otherwise equal status changes. A
newly joining mserver or member will not have an associated rank until after the join is
completed. For this reason, the network address of the joining member is used as a rank
number to give a priority among Joins. The final rule used to determine the priority of
virtually simultaneous changes is applicable when changes are submitted to the core-set by

different application groups with identical subject rankings in each group. In this case, a

47

tie-breaker is needed, and the rank of the receiving mserver is used to decide which
change will be processed.

4. The Basic Change-processing Protocol
As discussed in the description of an mserver core-set, the basic
change-processing protocol used by a core-set is a modified version of the three-way
handshake used in unreliable networks to ensure reliable message delivery. An event
diagram illustrating the sequence of message transmissions and receptions is shown in
Figure 16. The algorithm for the coordinator of the basic change is listed in Figure 17.

The algorithm for the non-coordinator core-set mservers is listed in Figure 18.

Phase] Phasell
Initiate Commit
coordinator

core-set
mservers /

Figure 16: Basic Two-Phase Change-Processing Protocol

The basic change-processing protocol consists of two phases: the Initiate and
Commit phases. In the Initiate phase, the coordinator multicasts an /nitiate message to all
mservers in the core-set. The core-set mservers respond with ACKs, acknowledging
reception of the /nitiate message. When all ACKs have been received by the coordinator,
the Commit phase is begun with the coordinator multicasting a Commit message to all
core-set mservers, indicating that it is safe to commit the change. All change-processing
messages use timeouts and retries to ensure continual progress in completing the change.

The procedures Reliable_receive and Reliable_multi_receive perform these functions.

48

Coordinator Basic Change
/* coordinator has been identified by reception of a change request or detection of a failed
mserver ¥/

/* Initiate phase */
current_change = change data (received or detected)

1.
2. update (exclude_list, internal state)
3. form_message (/mitiate, current_change, exciude_list)
4. multicast (Intiate_message, {core_set - exclude_lis: - coordinator })
5. Reliable_multi_receive (ACK_message, Initiate messg, {core_set - exclude list -
coordinator})
/* Commit phase */
6. update (exclude_list, internal state, current_change)
7. form_message (Commit, current_change, exchude_list)
8. multicast (Commit_message, {core_set - exclude_list - coordinator})
9. update (intemnal state)
10. previous_change = current_change
11. group_view = group view + |
Figure 17: Coordinator Basic Change Protocol
Non-coordinator Basic Change
/* core-set mserver has received and decoded /nitiate message */
/* Initiate phase */
1. current_change = change data (received)
2. update (exclude_list, internal state)
3. form_message (ACK, current_change, exclude _list)
4. send_message (ACK_message, coordinator)
5. messg = Reliable receive (Commit_message, Msg_Query_message)
6 if (messg = Commit_message) /* failed coordinator */
7. goto Broadcast Election Protocol
/* Commit phase */
8. update (intemnal state)
9. prev:ous change = o.mmt__dmge

10.

group_view = group_view + 1

Figure 18: Non-Coordinator Basic Change Protocol

49

a. Timeouts and Retries For All Messages
The need for timeouts and retries of messages has been discussed previously.
The function Reliable_receive accomplishes this for unicast messages, as described in the
monitoring protocol section. The same function is performed by the procedure
Reliable_multi_receive when multiple responses must be received, as shown in Figure 19.

The algorithm for the Reliable_multi_receive is listed in Figure 20.

<— timeout —>€— timeout —><— timeout —>

coordinator retry 1 2 ——>
A detect failure
core-set / \ g
mservers \t ->
X —>

failure time

Figure 19: Message Timeout, Retries, and Failure Detection

Reliable_multi_receive (expected_messg, last_messg, responders)
/* Last_messg has been sent, now collect expected_messg responses . Modifies the set of
responders to reflect those not responding */

I. set timer (timeout)

2. reties=n

3. initialize (all responders = not_responded)

4. num_responders = number of responders

5. responses =0

6. while ((timer not expired) and (responses < num_responders))
7 receive_message (messg)

8 if ((messg = expected_messg) and (responder = not_responded))
9. responder = responded

10. responses = responses + 1

11. responders = {responders - (all responding responders)}

12. if ((responses < num_responders) and (retries > 0))

13. retries = retries - 1

14, multicast (last_messg, responders)

1S. set_timer (timeout)

I6. goto 6.

Figure 20: Reliable_multi_receive Algorithm

50

Lines |1 and 2 of the Reliable_multi_receive algorithm initialize the timer and

number of retries. Lines 3 through S initialize the set of responders and number of
responses. Line 6 begins the main loop to collect responses from the set of expected
responding mservers. Line 7 is the timed receive function described in the
Reliable_receive function. Lines 8 through 10 determine if the response is valid and not a
duplicate, and if so, mark the responding mserver as having responded. Line 11 calculates
the new set of expected responding mservers after the loop has completed. If any
mservers have not responded and the retries have not been exhausted, lines 12 through 16
initialize for another timed reception loop to attempt to collect the remaining responses.
At the end of the procedure, the set of responders has been reduced to only those who
failed to respond. These mservers will be declared failed by the calling mserver; in this
case, by the coordinator in line 5 of the basic change protocol.

Figure 21 is an event diagram showing the sequence of messages in the

event of a lost or delayed ACK message from a non-coordinator core-set mserver. After a

ml m2 m3 md
m1l coordinator for C1 A C Lnitlate (¢
begin ACK timeout > m4 does not receive
o N Initiate (C1)
ACRE ACR &
P s
m1 times out on md's ¥ | tolttecy) |
AC ds Initiat e (!
K, resen e 5
A ’M&Ldf.ﬂ# md4 sends ACK (C1)
m1 sends Commit (C1) (%%
! [—3 > all commit C1
v v v

Figure 21: Lost or Delayed AC’K Message During Initiate Phase

51

timeout period, the coordinator resends the /nitiate message, and receives an ACK
message. The core-set then commits the change. In this event diagram, the muiticast of a
message is indicated by multiple arrows emanating from a small circle.

Figure 22 shows a similar situation, in which a non-coordinator mserver has
not received an expected (‘ommit message from the coordinator. This mserver sends a
Msg (Query message to the coordinator, querying the coordinator about the missing
(‘ommit message. The coordinator realizes that the querying mserver must not have
received the original Commit message, so it resends the message. The core-set then

completes the change.

m] m2 m3 md
m} coordinator for C1 C%__
—~———
Initiate (C1) Phase AR (RENA (R EDA A begin timeout for
R T JESPS Co Commit (C1)
] __'-"_—
PR
m] sends Commit (C1) q%“
m2 and m3 commit C1 T m4 does not receive
Commit (C1)
Queny (CL | V' md times out
Ms;
(———"—‘T‘”——J sends Msg_Query (C1)
—Commit ()|
]
.
\ 4 v v v

Figure 22: Lost or Delayed Commit Message

Figure 23 shows the sequence of events when a non-coordinator mserver is
unable to receive from the coordinator. m2 is unable to receive the /nifiate message from
coordinator m/, and after timeouts and retries, the coordinator declares m2 failed. While

the coordinator was waiting to receive an ACK message from m2, it received a

52

Msg Query message from m3 and m4, querying the coordinator about the expected
(‘ommit message. The coordinator responds with a Wair message, telling m3 and m+ that
the coordinator is still collecting A('Ks, and will send the (‘'ommit message when done.
The use of the Msg Query and Wait message is described in the next section. After the
coordinator has detected m2 failed, it sends the Commit message with gossip about mZ2's

failure to m3 and m4, completing the change and informing them that m2 has failed.

ml m2 m3 md

m1 coordinator for C1, , P== Initiate ()
\\%

begins ACK timeout T m3 and m4 receive

st | cuicn | ylnitiate (C1), m2 does not

m1 times out on m2's In;
ACK, resends Initiate %(

\ C11'Y m3 and md4 timeout on
w/ M }{
Commit (C1), send
4/// [—] Msg_Query
Wait (¢,
-\\

m1 times out on m2's Tajy, | Wait(c:
ACK, resends Initiate X \'35“\';' ! :: f;:;::’::ti::ﬁ .
waiting for ACK from m2

m1 times out on m2's \
ACK, detects m2 failed,
sends Commit (C1) with]

P m3 and m4 commit Cl,
gostlp that m2 failed | B | note m2's failure

/é'"

Figure 23: Lost or Delayed ACK Message During Initiate Phase

53

b. Virtually Simultaneous Changes

The basic change protoco! , listed in Figures 17 and 18 for the coordinator
and non-coordinator, respectively, is unable to resolve the virtually simultaneous changes
discussed previously. The Reliable_receive and Reliable_multi_receive functions used by
the basic change protocol are only capable of receiving the expected message or declaring
the non-responding mserver or mservers as failed. They are not able to handle unexpected
messages, including an /nitiate message from another mserver attempting to initiate a
change. To allow for the occurrence of simultaneous changes and other unexpected
messages, the Reliable_receive and Reliable_multi_receive functions were augmented to
cover all possible unexpected messages. These augmented versions are listed in Figures
24 and 25.

The augmented Reliable_receive function has the same name and is called
with the same parameters as the simpler version in Figure 15. The new version is used in
place of the simpler version in line 5 of the non-coordinator basic change protocol. The
modified or added lines to the algorithm are underlined in Figure 24. The new version is
used by a non-coordinator core-set mserver waiting for a Commit message from the
coordinator, by an MI or non-core-set mserver submitting an application change and
waiting for a Direct message, and by the monitor mserver waiting for a Reply message. A
detailed description of the augmented Reliable_receive function follows.

Lines 5 through 8 in the new algorithm detect an overlapping change
initiated by an mserver that already completed the current change. A Wait message is sent
to the attempting mserver to postpone initiation of the new change until the old change is
completed. An example of this situation is shown in Figure 26. Lines 9 and 10 detect the
failure of the coordinator and call the election protocol, which will be described in the next
section. Lines 11 and 12 detect a virtually simultaneous change initiation of higher
priority. The mserver drops the current change and begins processing the new change.

An example of thi- situation is shown in Figure 27. Lines 13 through 15 detect the

54

T - s ¥ SRR > i SR R it o B¢ Sk

Reliable_receive (expected_messg, query_messg)
/* Augmented Reliable_receive used by mserver to reliably receive (‘ommit from
coordinator or Direct from parent-mserver. Handles relevant unexpected messages.
Returns the recetved message */
1. set_timer (timeout)
retries=n
while ((timer not expired) and (messg != expected_messg))
receive_message (messg)
if (messg = Initiate_message or Coord_Fail message)
if (messg is from next change) /* overlap from next view */
form_message (Wait, current_change, exclude_list)
send_message (Wait_message, responder)
if (messg = Coord_Fail message of higher priority or current coordinator)
goto Broadcast Election Protocol
if (messg = Initiate_message of higher priority or current coordinator)
goto Non-Coordinator Basic Change Protocol
if (messg = Wait_message) /* response to Msg Query */
wait (wait_timeout)
goto 1. /* restart Reliable_receive for expected_messg */
if (messg = Msg_Query_message) /* other mserver querying status */
if’ (current change) /* other mserver must wait for next message */
form_message (Wait, current_change, exclude_list)
send_message (Wait_message, responder)
if ((previous unfinished change) and (mygid = previous coordinator))
form_message (Commit, current_change, exclude_list)
send message (Commit_message, responder)
23. if((messg '= expected_messg) and (retries > 0))

RERBREERERRERERRFRIEE &S

24, retries = retries - |

25. send message (query_messg, destination)
26. set_timer (timeout)

27. goto 3.

28. return messg

Figure 24: Augmented Reliable_receive Algorithm

55

reception of a Wait message in response to a Msg_(Juery message sent previously. The
mserver waits for a period, then restarts the Reliable _receir - An example of this action
is shown in Figure 26. Lines 16 through 22 detect a received Msg (Juery message and
perform the necessary actions. If the Msg (uery is about the current change, it is from an
MI or child mserver waiting for a Direct message. The querying MI or mserver is sent a
Wait message to stall their reception of the expected message. If the Msg (Query is about
the previous change and the receiving mserver was the coordinator of the previous
change, then the querying mserver did not receive the Commit message. The receiving
mserver sends a (Commit message to complete inge. An example of this
situation is shown in Figure 26. The remaining lines of the function are the same as the
original, and perform the primary function of receiving the expected message within the
timeout period.

The augmented Reliable_multi_receive function has the same name and is
called with the same parameters as the simpler version. The augmented
Reliable_multi_receive function is used in place of the simpler version in line 5 of the
coordinator basic change protocol shown in Figure 17. The modified or added lines to the
algorithm are underlined in Figure 25. The new version detects unexpected messages
received while collecting ACK messages, and responds to them appropriately. A detailed
description of the Reliable_multi_receive function follows.

Lines 8 and 9 detect a simultaneous change of higher priority. The
coordinator stores, then drops the current change, ceases to be a coordinator, and begins
processing the new change. An example of this action is shown in Figure 27. Lines 10
and 11 detect the failure of the current coordinator or a new coordinator for a virtually
simultaneous change of higher priority than the current change, and call the election
protocol, which will be described in the next section. A received (‘oord_Fail message for
a change of lower priority is quietly discarded. Lines 12 and 13 detect the reception of a

Wait message sent by an mserver still processing the previous change. The coordinator

56

Reliable_ multi_receive (expected_messg, last_messg, responders)

/* Augmented Reliable multi_receive, used after last_messg is multicast to reliably
collect all responses from other mservers or Mls. Handles relevant unexpected messages.
Modifies the set of responders to reflect those not responding®*/

BERBREBRERSEERERERIEeR e nsme =

set_timer (timeout)

retries=n

initialize (all responders = not_responded)

num_responders = number of responders

responses = 0

while ((timer not expired) and (responses < num_responders))

receive_message (messg)
if (messg = Initiate_message of higher priority than current change)
goto Non-Coordinator Basic Change Protocol
if (messg == Coord_Fail_message of higher priority than current change)
goto Broadcast Election Protocol
if (messg = Wait_message from previous change) /* group_view - 1 */
wait (wait_timeout)
goto Coordinator Basic Change Protocol /* restart change */
if (messg = Msg_Query_message) /* other mserver querying status */
if (current change)
if (responder did not receive last_messg)
send_message (last_messg, responder)
else /* responder already received last messg, so must wait */
form_message (Wait, current_change, exclude_list)
send_message (Wait_message, responder)
if ((previous unfinished change) and (mygid = previous coordinator))
form_message (Commit, current_change, exclude_list)
send_message (Commit_message, responder)
if ((messg = expected_message) and (responder == not_responded))
responder = responded
responses = responses + 1

responders = { responders - (all responding responders)}
if ((responses < num_responders) and (retries > 0)) /* more responses to collect */

retries = retries - 1

set_timer (timeout)

multicast (last_messg, senders) /* resend original message */
goto 6

Figure 25: Augmented Reliable_multi_receive Algorithm

57

will perform a wait timeout, the resume the current change. An example of this is shown
at the top of Figure 26. Lines 15 through 21 detect a received Msg (Juery message and
perform the necessary actions. If the Msg Query is about the current change and the

querying mserver did not receive the /nitiate or Direct message sent prior to the

ml m2 m3 md
Cl1 Comn.rh Phase (GV=n) (ol and m2 ci
m2 coordinator for C2
(GV=n+1) Commit to m4 is lost
—3| o4 and m3 waiting for
m1 begins message Commit for C1, send
timeout T Wait (C2) to m2
m2 begins wait message m3 finishes C1
timeout timeout
m1 times out waiting
for Commit (C2), sends c\y md times out waiting for
Msg Query (C2) Commit from m1, sends
Ms, C1
m1 begins wait timeout & Query (CD)
ml gets Msg_Query (C1)
from m4, responds with
new Commit (C1)
wait (CO) 3| md finishes C1
m2 finishes wait timeout, J
resends Initiate (C2) %@g
| AckCD—
all are now processing C2
A 4 ¢

Figure 26: Resolution of Overlapping Changes

Reliable_multi_receive call, the mserver resends the appropriate message. An example of
this situation is shown in Figure 26. If the querying mserver did receive the prior message,

then the Msg Query is about a new change which has been started before the old change

58

completed. The coordinator sends a Wair message to stall the processing of the next
change until the last change is completed. An example of this is shown in Figure 23. If
the Msg (Query is about the previous change and the receiving mserver was the
coordinator of the previous change, then the querying mserver did not receive the (Commit
message. The receiving mserver sends a Commit message to complete the last change.
An example of this situation is shown in Figure 26. The remaining lines of the function are
the same as the original, and perform the primary function of collecting the expected
response message within the timeout period.

The event diagrams in Figures 26, 27, and 28 show various occurrences of
concurrent changes attempting to be processed in a core-set at one time. Since the MS
guarantees that only one change at a time will ever progress to completion, a method of
resolving the various concurrent change attempts must be used. The algorithms in

Reliable_receive and Reliable_multi_receive provide the necessary capability to resolve

ml m2 m3 md

m1 coordinator for C1
D m4 coordinator for C2

m4 learns C1 has

priority; stores C2,

begins processing C1.
C1 bhas higher priority, i C2
C2 is dropped by all mA ignores C2 messages
C1 Commit Phase &-&\ﬂ;\ﬂ

Initiate C2 7‘L m4 resumes C2
“’/’4
7 7 v

Figure 27: Resolution of Virtually Simultaneous Changes

59

concurrent changes to a single change. Figure 26 shows one case where an mserver m2
has completed the previous change C1 and immediately initiates the next change C2. This
is a very likely occurrence, since each mserver will queue failures and changes, waiting for
the next opportunity to initiate them. Mserver m+ did not receive the (‘ommit message for
C1, so when it receives the /nitiate message for C2 it sends a Wait message to the new
coordinator m2 to postpone the new change C2 until the old change C1 is completed. m4
times out waiting for the Commit message for C1 and sends a Msg (Query to ml, which is
now processing C2. m/ receives m4's Msg (Juery while using the Reliable_receive
function and sends m4 another Commit message. m+ is now able to complete C1. After
m2 finishes the wait timeout, it resumes C2.

Figure 27 shows tv0o core-set mservers attempting to initiate virtually
simultaneous changes. All core-set mservers receive both /nitiate messages, although
perhaps in different order due to the asynchronous environment. All core-set mservers
have the same core-set state information, and therefore make exactly the same decision
about which change has priority. In this case, C1 has priority, and is therefore recognized
as the change to be processed by all core-set mservers, while C2 is dropped by all. The
candidate coordinators must collect AC’K's from all other core-set mservers, including the
other candidate coordinator, before sending the (‘ommit message. The candidate
coordinators make the same decision about which change has priority; therefore, only one
coordinator will be selected and only one change will be processed. If all core-set
mservers receive all Initiate messages, it is impossible for more than one change to
progress to completion in the core-se: It will be shown later, that under non-ideal
circumstances, some core-set mservers may have failed or do not receive all messages,
leading to a situation where more than one change is being processed in the same core-set.
However, it will also be shown that if this occurs, the core-set will always partition in such
a manner that all core-set mservers in the partition will be processing the same change, and

will arrive at the same consistent view.

60

Figure 28 is a combination of the overlapping change shown in Figure 26
and the virtually simultaneous changes shown in Figure 27. This event diagram shows
that even under the circumstances when changes overlap at the beginning and end of a

change, only one change at a time progresses to completion.

ml
C1 Commit Phase (GV=n) (
m1 and m2 begin
simultancous changes w1 and m2 finish C1
(GV=n+1) Commit to m4 is lost
m1 realizes C2 has o4 and m3 waiting for
priority; stores C3, Commit for C1, sead
begins C2 mess Wait (C2) to m2
age
2 begluswalt timeont m3 finishes C1, starts C3
timeout
Ack (& m4 waiting for Commit
for C1, seads Wait to m1

m1 ignores C3 responses Q

1 "4 : m4 times out waiting for

-~ Commit from m1, sends
Msg_Query
m] responds with
aew Commit (C1)
wait (C2)
timeout md finishes C1

m2 finishes wait timeout, J.)
\0“““ K\\ 1
resends Initiate (C2) / \\;;%L) m1 and m3 realize C2

. - . has priority; drop C3,
~ACK (¢ ACKEZ—T ack (€D
all are now processing C2 %4:// begin processing C2

Figure 28 Virtually Simultaneous and Overlapping Changes

61

5. Coordinator failure

The basic change-processing protocol assumes that the coordinator of the change
will continue to function throughout the processing of the change. The protocol
definitions and examples to this point handle various situations, including the failure of
non-coordinator core-set mservers. However, it is entirely possible that the coordinator of
a change may fail or be unable to communicate with others during the processing of a
change. In the event of the coordinator failure, a new coordinator must be elected.
Birman and Riccardi [9] have proven that when the coordinator of a change can fail, a
three-phase change protocot is required. To this end, another phase must be added to the
two-phase basic change protocol. This phase is a broadcast election phase, as described in
[26]. which is conducted to elect a new coordinator to resume the onginal change being
processed. After the distributed election is accomplished, the new coordinator will restart
the original change with a new Initiate message to all surviving core-set mservers, or,
under special circumstances, will simply send a Commit message to complete the change.
An illustration of the three-phase election and change processing protocol is shown in

Figure 29, and the algorithm or the broadcast election is listed in Figure 30.

Phase 1 Phasell Phaselll
Election Initiate Commit

Figure 29:Election and Change-processing Protocol

62

Broadcast Election

/* Coordinator failure has been detected. Elect new coordinator */

update (exclude_list, internal state)

form_message (Coord Fail, current_change, exclude _list)

multicast (Coord_Fail_message, {core_set - exclude_list - coordinator})

Reliable muiti_receive (Coord_Fail message, Coord_Fail_message, {core_set -

exclude_list - coordinator})

5. update (exclude _list, internal state)

/* determine new coordinator from responding mservers */

coordinator = highest rank mserver with current change active
Resume_change (current_change, coordinator)

B W -

=S o

Figure 30:Broadcast Election Protocol

The broadcast election protocol is commenced upon detection by one or more
mservers of the failure of the current coordinator. This detection could occur by
monitoring or by the timeout of an expected message while using the Reliable_receive
function. The detecting mserver will multicast a Coord Fail message to all other core-set
mservers, which will include the status of the mserver in processing the current change.
This mserver will then collect responses from all other mservers with the
Reliable_muiti_receive function. The other mservers receiving the ("oord Fail message
will also muiticast their status and collect responses from all others. In this way, all
core-set mservers learn of the status of all other core-set mservers with respect to the
interrupted change. These steps are covered by lines 1 through 5 in Figure 30. In order
for an mserver to become the new coordinator, it must have received the original /nitiate
message, but not yet have committed the change. Only an mserver still processing the
change will have sufficient information to restart the change. There is guaranteed to be at
least one such mserver, since only an mserver still processing the change could determine
that the coordinator had failed. Since all mservers have learned the status of all other
mservers, a uniform distributed decision can be made by all as to the identity of the new

coordinator. To select the new coordinator from those mservers still processing the

63

current change. a priority scheme is used. The mserver with the highest rank in the
core-set, still processing the original change, will become the new coordinator. All
core-set mservers know the rank of all other core-set mservers, so they all make exactly
the same distributed decision. Thus, a single new coordinator is chosen.

Once the new coordinator is chosen, it will resume the original change using the
two-phase basic change-processing protocol, as shown in Figure 29. However, if at least
one core-set mserver has committed the change, then it is safe for the coordinator to
immediately multicast a Commit message to have all core-set mservers commit the change.
This is possible due to the fact that in order for any mserver to have received a Commit
message from the failed coordinator, that coordinator must have received ACKs from all
surviving core-set mservers. This means that all mservers in the core-set have knowledge
of the change, and can therefore commit the change. Any mserver that did not have
knowledge of the change would have been detected failed by the old coordinator, using
the Reliable_multi_receive procedure. The old coordinator would include all detected
failures in the exciude list added to each multicast message, and thus any mserver
receiving the Commit message would learn of the detected failure of all mservers which
had not received the original /nitiate message. The mserver, learning by gossip of the
failure of other mservers, would cease to communicate with them. These excluded
mservers will be removed from the core-set, so that only mservers which had received the
original change remain.

Figure 31 shows the event diagram for the compressed election and
change-processing protocol described above. Figure 32 is the listing for the
Resume_change function used in Line 7 of the broadcast election protocol. This function
makes the decision for the new coordinator whether to restart the original change with an
Initiate message or use the compressed protocol and simply multicast a Commit message

to complete the original change.

core-set

time

Figure 31: Compressed Election and Change-processing Protocol

Resume_change
/* Following broadcast election of new coordinator. */
1. if (any core_set mserver has committed the change)
/* then use compressed change protocol - send/recerve Commit only */
if (coordinator)
form_message (Commit, current_change, exclude_list)
multicast (Commit_message, {core_set - exclude_list - coordinator})
else /*non_coordinator */
messg = Reliable receive (Commit_message, Msg_Query_message)
else /* no mservers have committed the change - must restart */
Rexnitiate (current_change)

[AN il

Figure 32: Resume_Change Algorithm

Examples of various scenarios involving the failure of the current coordinator are
shown in five event diagrams on the following pages. These examples illustrate some of
the more likely scenarios which might be encountered when a coordinator is detected
failed, and the sequence of events leading to the election of a new coordinator and
completion of the original change.

Figure 33 shows the sequence of events when the coordinator fails in the Initiate
phase, immediately after multicasting the Initiate message. All other core-set mservers
time out waiting for the Commit message, detect the coordinator failed, and conduct an

election for a new coordinator. The new coordinator completes the original change.

65

ml m2 m3 md

m1 coordinator for C1 Q&&J M
T~
inator fails # : H\\)‘Nﬁ m2, m3, and m4 begin
message timeout

all time out, query
coordimator

all time out, query
coordinator again

m4 times out first,
sends Coord_Fail

m2 and m3 send
Coord_Fail

coordinator detected
failed
Election Phase

m2 has highest rank,
becomes coordinator,
and re-Initiates C1

~

Figure 33: Coordinator Failure During Initiate Phase

Figure 34 illustrates the case where the monitor of the coordinator is unable to receive
from the coordinator. The monitor m2 detects the coordinator m/ failed by monitoring
and initiates a change C2 for the failure of m/ by multicasting an initiate message to all
core-set mservers. The other core-set mservers are already processing the change C1.
The change C2 is recognized by m3 and m4 as a failure of the current coordinator;
however, it is also a virtually simultaneous change, since no mserver has committed C1.
For this reason, C2 is treated as a virtually simuitaneous change of higher priority than C1,
avoiding the need to elect a new coordinator. Since the failed coordinator initiated the

original change and then failed, there is no need to resume processing of this change. If an

66

ml

m1 coordinator for C1, m3 and md receive
ACK timeout
begins ACK Initiate (C1), m2 does not

(GV=n)
m2 detects m1 failed by
monitoring, sends
Initiate (C2) for m1’s failure

nAp(I: lté.mes ou(:’ oll:' iT}Z’s }{ - !"\"'ite « - 3 (GV=n)

resen ate (1
T KD WD '
AR }L},\— m3 and m4 realize C2's
pS e subject is the coordinator,
< drop C1 and begin C2
B
\x.‘j\-\a’mn.\m.z) m2, m3, and m4 commit
, 3 M C2, ml's failure

m1 times out on m2's X Tnitiag

ACK, resends Initiate /(1) |

m1 times out on m2's v

ACK, detects m2 failed, (- Commir (|

sends Commiit (C1) with]

gossip that m2 failed . i \“"\\‘*‘ ::n:'::lm‘ ignore message

4 4 4 4

Figure 34: Coordinator Failure With Lost /nitiate Message

application group submitted the change to m/, the group will be partitioned at m/ anyway,
so there is no need to process the submitted change on the other side of the partition. If
ml's change was a physical change about a core-set mserver, it will either be redetected
and processed, or perhaps will remedy itself.

Figure 35 illustrates the case where the coordinator is detected failed in the
Commit phase, after one or more mservers have received the Commit message. The
core-set mservers conduct a broadcast election in which m2 becomes the new coordinator.
Since m4 committed the original change, the compressed change protocol is used, and m2

multicasts a (‘'ommit message to finish the change.

67

ml m2 m3 md

m1 coordinator for C1 (%\M‘j&g\u_
T— T

Initiate (C1) Phass
m2 detects m1 failure by
rin; d
m1 sends Commit (C1) (:“ml F ‘f"'en s
m4 commits C1
m2, m3, and m4 begin .
election for coordinator m3 and m4 learn of m1's
upon learning of m1's failure, ignore messages
perceived failure from m1
m2 has highest rank,
becomes new coordinator,
finishes C1 with Commit

Figure 35: Coordinator Failure In Commit Phase

Figure 36 illustrates an unusual case where the failure of the coordinator and lost
messages lead to one core-set mserver committing the change C1 (m3), one mserver stili
processing the change (m4), and one mserver never having received the change (m2). As
a result of this situation, m4 will become the new coordinator, since it is the only mserver
still processing C1. Mserver m3 learned of m2's detected failure with the Commit message
received from the original coordinator m/. The end result is that m3 and m4 commit C1
and reform into a new core-set, while m2 never learns of C1, and is excluded from the
original core-set.

The final event diagram shown in Figure 37 shows a situation in which the
coordinator has failed after multicasting an /nitiate message which was received by only
one core-set mserver. Another core-set mserver, m4, also initiated a virtually

simultaneous change of lower priority. m/ receives the /nitiate message for both changes

68

ml m2 m3 md

m1 coordinator for C1 Partition between m1
begins ACK timeout (9%\\)'% ey | andm2exists
a
ACKIC) ACK () m3, and m4 begin
e— ::j:jﬂ/‘k‘)" A message timeout
|

m] times out on m2's

ACK, ds Initait
resends Initaite \\,']
m1 sends Wait (C1) 53::‘:::

m3 and md time out,
}{ query coordinator

&Q%ogglﬁ
s

q WaitC
tom3 and md %%mﬂ m3 and m4 begin timed
m1 times out on m2's %]f wait for m1's Commit
ACK, resends Initaite

m1 detects m2 failed,

sends Commit (C1) with GN CommiyCy) m3 commits C1, learns
gossip about m2's failure %“ﬂ of m2's failure. Message
to m4 lost, still waiting

previous coordinator 3
fails

coordinator detected r/,/

failed — |

x m4 times out oh wait for

Commiit from m1, sends
Msg_Query, retries, then
detects m1 failed

4
m3 sends Coord_Fail
to m4 only, since it

m2 sends Coord_Fail BLoord Fay detected m2 failed,
indicating it had never md4 learns of m2's failure
received C1. None are

communicating with m2, m4 is highest rank mserver
m?2 times out on Commit, still processing C1, sends
detects m4 failed, and in Commit (C1) since m3 has
processing m4's failure, already finished C1

detects m3 failed. m2 v

reforms as singleton set

Figure 36: Coordinator Failure With Lost Messages

69

ml m2 m3 md
m2 coordinator for C1 e (G fuitinte (C only m1 gets Initiate (C1)
coordinator fails “ tnitiate (LD o :M coordcinl:mr 2
ut
m1 begins message ~3CK (¢ T egins A
timeout 4/%‘:\ ACK (¢, m3 sees only C2,
4 m1 sees C1 and C2,
C1 bas priority
ml times out, sends Ms . e
Query to coordinator \&&% $ m3 detects m2's failure
by monitoring, queues
the failure
m1 times out, sends
’ Ms, C2 m4 times out on ACKGs,
another Query & Luery (c,L/_/yJ'HP X rescnds Initiate (C2) to
(//)(// ml and m2
m1 times out, detects Coord §
coordinator failed, i
sends a Coord_Fail %L\ﬂ dren Ca et s el
- drop C2, note m2's failure,
begin election for C1
v v v

Figure 37: Coordinator Failure With Simultaneous Change

and decides that C1 has priority, and therefore drops C2, assuming that all other core-set
mservers will make the same decision. However, /3 and m4 did not receive C1, so they
continue to process C2. m/ eventually times out on the Commit message expected from
the m2, detects the coordinator failed, and multicasts a Coord Fail message to all core-set
mservers. m3 and m4 now learn of the higher priority change C1. Since no mservers had
committed C2, the change is dropped and m3 and m4 begin processing Cl with an

election for a new coordinator.

70

T T EE T TR e, TN

D. APPLICATION GROUP CHAMNGE PROCESSING

The general description of applicaticn group change processing has already been
presented in previous sections. In this section, the protocols necessary to submit a change
to the application core-set and then reliably propagate the core-set change directive back
to the application are presented. These protocols are divided into the algorithms used by
MIs submitting or receiving a change directive, and those used by mservers in the
hierarchy or in the core-set of the application. Figure 38 shows the basic application

change protocol.

Submit Initiate Commit Direct

2nd-level ; T\ R

core-set AV}
)

L2 2R 2

mservers
coordinator

1st-level mserver
submitting MI 7

ki
A
7

time

Figure 38: Application Group Change Protocol

1. Mils
The MI accepts change requests from the application groups that it supports and
relays these requests to the LAN mserver for submission to the application core-set. The
MI may also detect application process members failed and submit these changes as well.
The algorithms used by an MI are listed in Figures 39 and 40, for the submitting MI and a
non-submitting MI, respectively.

71

Submitting M1 Basic Application Change
/* Ml received change request or detected change in an application group */
/* Submit phase */

WX OTZFN A WN—

S

current_change = application change data (received or detected)
update (intemal state)

form_message (Submit, current_change)

send message (Submit_message, parent_mserver)

messg = Reliable_receive (Direct_message, Msg_Query_message)

Direct phase */

form_message (ACK, current_change)
send_message (ACK_message, parent_mserver)
update (intemal state)

application_group_view = application_group_view + |
reliably inform application of change

Figure 39: Submitting MI Application Group Change Protocol

Non-submitting M1 Basic Application Change
* Ml received change Direct message from parent_mserver */
/* Direct phase */

bW -

form_message (ACK, current_change)
send_message (ACK_message, parent_mserver)
update (internal state)

application_group_view = application_group_view + |
reliably inform application of change

Figure 40. Non-submitting MI Application Group Change Protocol

72

2. Mservers

The LAN mserver accepts application change requests and failures submitted by
the Mls running on the host computers of the LAN. These changes are then submitted up
the MS hierarchy of mservers to the application core-set, where the change is processed.
Once the core-set commits the change, all core-set mservers with application members
below them multicast the change directive to their children mservers with application
members below them. At each level an ACK is sent to the parent mserver to ensure
reliable delivery of the change directive to all application member processes. The change
directive is propagated to each MI with members of this application, which then inform
the application members of the completed change. The algorithms used by mservers are
listed in Figures 41 and 42, for the non-core-set mserver and application core-set mserver,

respectively.

Non-core-set Mserver Basic Application Change
/* mserver received Submit message relayed from submitting MI; will reliably relay to
parent_mserver */
/* Submit phase */
1. send_message (Submit_message, parent_mserver)
messg = Reliable_receive (Direct_message, Msg_Query_message)
if (messg '= Direct_message) /* failed parent_mserver */
goto Broadcast Election Protocol
update (intemal state)
* Direct phase */
form_message (ACK, current_change)
send_message (ACK_message, parent_mserver)
form_message (Direct, current_change, exclude _list)
multicast (Direct_message, {children with application members - excluded})
Reliable_multi_receive (ACK_message, Direct_message, {children with application
members - excluded})
. update (intemal state)

F0heWN

-0 00 3 O

Figure 41: Non-core-set Mserver Application Group Change Protocol

73

Core-set Mserver Basic Application Change

/* core-set mserver leamed of application change by Submit message relayed from
submitting Ml or /nitiate message from application change coordinator */

execute Basic Change Protocol

form_message (Direct, current_change, exclude _list)

multicast (Direct_message, {children with application members - excluded })
Reliable_multi_receive (ACK_message, Direct_message, {children with application
members - excluded })

5. update (exclude list, intemnal state)

& W -

Figure 42: Core-set Mserver Application Group Change Protocol

Figure 43 is an event d:agram showing the actions when a Submit message is lost.
In this case, the Submit message is lost between the LAN mserver and the core-set
mserver. The MI times out waiting for the Direct message from the LAN mserver and
sends a Msg (Query. The LAN mserver resends the Submit message to the core-set and
also sends a Wait message to the querying MI, indicating that the mserver is still pursuing
the application change and the MI should wait for a while longer before detecting a
failure. The core-set now receives the Submit message, completes the processing of the
application change, and propagates a Direct message to the LAN mservers and then to the
MIls. The LAN mservers send an ACK to the core-set, and the MIs send an ACK to the
LAN mserver, indicating successful propagation of the Direct message.

Figure 44 is very similar to Figure 43 except the Direct message is lost instead of
the Submit message. The MI times out waiting for the Direct message from the LAN
mserver and sends a Msg_(uery. Instead of sending a Wair message to the querying MI,
the LAN mserver sends a Msg (Juery to the core-set. The mserver in the core-set
receiving the query resends the lost Direct message, which is propagated to the MI with
ACKs returned at every level, and then to the application.

Figure 45 shows the failure of a core-set mserver after processing the application
change, but before multicasting the change directive to the children mservers. Using

message timeouts and retries, the LAN mserver detects the parent mserver in the core-set

74

failed. The MS hierarchy is partitioned at the failed core-set mserver, causing a partition

in the application group as well.
Submit Initiate Commit Direct

2nd-level ‘; \ b
core-set
mservers

coordinator

1st-level mserver 7—" } , K
sub R Ml <——timeout———» time

Figure 43: Application Group Change With Lost Submit Message

Submit Initiate Commit Direct

2nd-level % X LR, >
core-set N A >
servers 1 7 >
coordinator 7—>
1st-level mserver 7‘ — T /' ; _Z:
submitting M1

time

Figure 44: Application Group Change With Lost Direct Message

Submit Direct
2nd-leved 37 >
core-set 2.phase ¥ 7 i
1st-level mserver 7 n falhre/' - f n failnreH
ubemitting M1 7 <— timeor t—><—timeout o><— timeout—>"
nittl <« timeout——————> "wait" ~ time

Figure 45: Application Group Change With Failed Coordinator

75

E. PARTITION RESOLUTION

The final protocol provides the means for the MS hierarchy and application groups to
dynamically reconfigure in the event of network partitions. The reconfiguration method of
the physical hierarchy is fixed, whereas the reconfiguration method used by each
application group is determined by QoS selections made by each MSU when the

application group is initially created.
1. Dynamic Reconfiguration of Physical Core-set

a. Perceived Failures and Partitions

As discussed previously, the actual failure of one or more mservers in a
core-set is indistinguishable from the perceived failure of these mservers caused by an
interruption in the network communication capability. For this reason, all perceived
failures are treated as actual failures. The failed mservers are excluded from further
core-set communications, and the core-set is reformed without the failed mservers. One
partition of the core-set will contain the original parent mserver, the other partitions will
not. This means that the physical hierarchy of mservers is also partitioned. However,
there exists a possibility that the mservers perceived as failed are still functioning. It
would be desirable to have these mservers automatically rejoin the original core-set when
the network partition is repaired. This protocol provides the means for this automatic

reformation of the physical hierarchy.

b. Automatic Reformation Using the Shared Multicast Group
The monitoring protocol, basic change protocol, and broadcast election
protocol provide the means to detect failures or perceived failures of mservers. The basic
change protocol provides the means to process the failure of core-set mservers and reform
the core-set. An example of such a reformation due to a network partition is displayed in

Figure 46, with the reformed subsets of mservers shown in Figure 47. Although the

76

m! coordinator A
for C1 (m0's
failure), begins
ACK timeout
" ACKAYT T 1217 begin
‘,,‘—/ message timeout
for Cljand C2
ml times out,
resends InitiateY(p—_____ by .
to m6-m9, %NLW*"X'—
ACK timeout 1l
8} \ CY) -
wop QPG e (5
"‘ //
—
</
q Waiy(C
m1 times out, B——___lIaj
resends Initiate (L""“*‘Ql\x‘_
to m6-m9, And
ACK timeout
ml detects VY C
m6-m9 failed, }‘\‘Q%\’
sends Commit
with gessip of L
the failures v v v

Laigiats (C21

e (C

|
°

A

ros

Figure 46: Partitioning of a Core-set

m9 coordinator
for C2 (m8's

faiure), begins
ACK timeout

md4 and mS select
C1 due to higher
rank of subject

m9 times out,
resends Initiate
to m0-mS, begins
ACK timeout

m2-m7 timeout
on Commit, send
Misg_Query,

ml and m9 send
Wait messages

m9 times out,
resends Initiate
to m0-mS, begins
ACK timeout

m9 detects
mO0-mS failed,
sends Commit
with gossip of
the failures

perceived failed mservers have been removed from the core-set membership, they have not

been removed from the membership of the multicast group which the core-set uses to

multicast change-related messages.

This provides the means by which an automatic

reformation of the original core-set may be accomplished.

Once the core-set is reformed without the perceived failed mservers,

attempts are periodically made to reestablish communications with the other partition of

77

Simuiltaneous failures Coordinator m1 unable to After processing C1 and C2,

detected by m1 and m9. send to m6, m7, and m9, the set has reformed into two
Two partitions also exist Coordinator m9 unable to subgroups. Subgroup 1 is
in the set as shown. send to m1, m2, and m3. larger because C1 had priority.

Figure 47: Partitioning of a Core-set

mservers. These attempts are made by multicasting query messages to the original
core-set multicast address. Current members of the core-set ignore these queries;
however, an mserver in the other partition will respond to a query, if able. If
communication is reestablished within a predetermined timeout period, a simple merge of
the two partitions is conducted, restoring the original core-set, with the exception of any
new additions or deletions to either partition. The group view of the reformed core-set is
set to one more than the higher view number of two formerly partitioned subsets. This is
the same action that would be performed with an ordinary merge of two separate core-sets
of mservers. The original parent mserver is now a member of both of the reformed

subsets, so the physical hierarchy is also automatically restored.

c¢. Unique Names and Addresses of Partitioned Core-sets
In the event that the partitions of mservers are unable to restore
communciations, the reformed subsets are converted to completely independent core-sets.

Since all core-sets of mservers must have a unique name and multicast address, some

78

method must be used to automatically obtain these _.uque values. To obtain a unique
name, each sub-core-set appends a unique suffix to the original core-set group name. This
suffix value must be automatically derived by each partitioned subset of mserves
independently, and with a guaranteed unique value for all partitioned subsets. The most
readily available attribute that all subsets can use to obtain a guaranteed unique name is
the original group identity (gid) of a significant mserver remaining in each partition. The
lowest mserver gid of the mservers remaining in each partition is appended to the original
core-set group name. In this manner, all partioned core-sets are guaranteed a unique
core-set name. However, all partioned core-sets are still easily identifiable as subsets of
the original core-set, which simplifies the task of manually reconfiguring the physical

hierarchy when the network is repaired.
2. Dynamic Reconfiguration of Application Groups

a. Reconfiguration Rules
Any partition of the MS physical hierarchy results in a partition of all
application groups which spanned the original hierarchy. The method of resolving the
partitions of each of the application groups depends on the QoS selection made by the
MSU at the time the application group was created. The MSU uses the size, membership
and name characteristics associated with an application group as the parameters to specify
how partitions will be resolved. These parameters are used by two rules which explicitly

determine how partitioned subgroups will be handled. These rules are:

1. Keep alive any partitioned subgroups that meet a certain condition specified
by the user. Any subgroups which do not meet the condition will be
terminated.

2. Partitioned subgroups will attempt to find and merge with other partitioned

subgroups that have a certain user-specified property.

79

The first rule utilizes a user-specified condition related to group size and/or
membership to determine which subgroups will continue to function. Using group size as
the condition for deciding which subgroups survive, the MSU may specify that all
subgroups terminate upon a partition by selecting a size equal to the original group size.
All partitioned subgroups would be smaller than the original group, and would therefore
terminate, also terminating the application. Similarly, the MSU may specify that all
subgroups survive a partition by selecting a limiting size equal to zero. All partitioned
subgroups would be larger than the selected size and would continue to function. Any
size between zero and the original group size may be selected, permitting subgroups larger
(or smaller) than the specified size to continue to function, and terminating all subgroups
smaller (or larger). The membership of the group may also be used to determine which
subgroups survive. The MSU may specify the condition that a subgroup must have a
particular member or type of member to continue to function. Any subgroups not
containing such a member will terminate.

The second rule utilizes an MSU specified property related to the original
group name or the identity and location of significant members of the group to determine
which partitioned subgroups will attempt to merge. The simplest case is that ali
subgroups attempt to merge with all other subgroups of the original group. The property
used is the same base group name common to all subgroups from the original group.
Another simple case is that no subgroups attempt to merge. Use of the null property
ensures that no subgroups attempt to merge with other subgroups. The identity of certain
key members of the original group may be used as the property, also. Partitioned
subgroups attempt to merge with the subgroup containing these key members.

By combining these two rules, a wide variety of partition resolution methods
can be produced. The first rule determines which partitions survive, and the second rule
determines which partitions attempt to merge. Each rule can also combine multiple

parameters to provide very specific and flexible methods of handling partitions. For

80

example, all subgroups larger than a size of three which contain a particular member type

will survive and attempt to merge with subgroups with the same base group name

containing another particular member type.

81

V. CORRECTNESS ARGUMENTS

In the previous chapters the architecture and protocol descriptions for a global,
decentralized membership service were presented. In this chapter arguments and proofs
are presented to show that the MS protocol performs correctly under all circumstances.
The correct performance of the MS protocol leads to achievement of the desired attributes
of the MS, as discussed in Chapter II. The arguments presented here focus on the
functioning of a single core-set of mservers, treating the set as a group in itself, with the
individual mservers in the core-set as members of the group. The proofs show that
changes to the membership of this group are made in a manner which always maintains
strong consistency of the membership information at all members of the core-set. The
arguments about the correct operation of a single core-set of mservers can then be
extended to the physical hierarchy of core-sets of mservers, and then to the application
groups which utilize the MS, showing that consistent membership information is always
obtained at all application process group members.

The assumptions and definition of terms used in the proofs are listed first, with their
specific implications with respect to the correctness arguments described. These are
followed by a description of the criteria for correctness and a summary of the actions that
the protocol takes to maintain the membership knowledge accordingly. Finally, key
statements about different aspects of the protocol are proven, thus proving the correctness

of the MS protocol.

A. ASSUMPTIONS

As described previously, an asynchronous communication environment is assumed to
exist, providing an unreliable message delivery capability with an unbounded delay, as in

the present best-effort Internet. Thus, network failures that include dropped messages and

82

network partitions are permitted. All member failures are assumed to be crash or fail-stop

[5. 9. 10, 11]. In such conditions, failures can only be perceived, and both actual member
failures and network partitions lead to perceived failures of the members. For this reason,
every perceived failure is processed as an event that partitions the group. Partitions of the
membership of a group are assumed to be acceptable to the user of the membership
service, who may make QoS selections to determine how partitioned groups will continue
to function, as described in earlier chapters. Unlike many other membership protocols,
majority-based decisions are not used by the MS protocol to ensure that only a single
partition survives; instead, complete agreement is required among all surviving members,
leading to the possibility of separate, functioning partitions of any size. Continuous
changes to the membership are allowed; however, the changes are committed one at a

time, and with a specific order in each partition.

B. TERMS AND DEFINITIONS

The specific terms and implications of their use in the correctness arguments

described later are listed below.

1. Change Events
The events that cause a change in the membership are: explicit join and leave
requests by members, perception of failure by the monitoring of members by other
members, and suspicion of failures resulting from member or network failures which lead

to a lack of response during change processing.

2. Change Event Priority
Every change event has an associated priority to enable ordering of virtually
simultaneous changes. Failures have a higher priority than voluntary joins or departures.
Priority of a failure or departure event is the rank, or seniority, of the failed member in the
group. The most senior member always has a rank of 0. When two or more members

initiate a change simultaneously, the coordinator initiating the higher priority change, as

83

determined by the rank of the subject of the change, prevails. In virtually simultaneous
joins, the subjects do not yet have a group rank, so the network address of each subject is
used in place of the rank. The subject with the lower network address will be interpreted
as having a higher temporary rank, and therefore will have a higher priority, joining the

group first.

3. Isolation
A member that perceives another member as faulty ceases all communication
with that faulty member. This leads to the member perceived as faulty also determining

that the other member is faulty, since no communications are received.

4. Gossip
A member that isolates another member gossips about the isolation in the
subsequent communication it has with every other group member. Thus, in the absence of
any other failures, a multicast following an isolation leads to the whole group isolating the

member that was perceived faulty by the sender of the multicast.

5. Group View
This term denotes the ordered membership list maintained by each member m,

and is denoted as View (m,), where x denotes the view number.

a. Definition
The group view at a member is the set of members that are believed to be
part of the group. It is ordered with respect to the seniority of members in the group and

has an integer, called a view number, associated with it.

b. Remarks
Every membership change alters the number of members in the view at a
member and leads to the installation of a new view identified by the next higher view

number. The number of members in the group may change by more than one in a single

84

view change. The ra»¥ of a member denotes its seniority in the group, with the most

senior member having 0. Identical views imply identical membership as well as ranks.

6. Group Partition
Let G denote the set of all possible potential and current members of a group. A
partition P of G is defined below.
a. Definition
P is a subset of the all members' set G, such that V m m, € P, if View,(m)

and View (m) are defined, then Vm, « * < (m). m, € View (m) < m, € View,(m),
and all members have the same rank 1.. *.. tv views.

b. Remarks

The view associated with partition / is denoted View,, and the partition
containing m, is denoted P(m,). Thus, all members in a pariition must have identical views.
However, it is possible that there exists an m, outside » partition, bu still in every
member's view for a particular partition. Such partitions are called unstatic partitions.
The MS protocol treats such a partition as legal, and eventually removes m, from the
views of all members of the partition. When no such m, exists for a partition, the partition
is called stable. Network and member failures lead to the creation of group partitions in

asynchronous environments.

7. Group Membership Protocol
Using the definitions of the terms above, a protocol is defined to solve the Group
Membership Problem (GMP) as below.

a. Definition
A protocol solves the GMP correctly if every change event results in group

85

b. Remarks

The above definition of a correct solution of the GMP requires it to satisfy
distinct properties corresponding to the underlined conditions in the definition above.

e E1 This property, arising from the condition of every, requires that a
change event observed by a member is processed despite other virtually simultaneous
change events and failures during protocol execution, including that of the coordinator.
The only situation in which a change event is not processed is in case of catastrophic
occurrences in which all the members with knowledge of the change event suffer real
failures.

® E2 This property, arising from the condition of eventually, permits the
processing of a change event to be suspended temporarily, however, it requires that the
resulting view is always installed at all members of the partition before the change event
occurred after only a finite number of changes are allowed to take place.

® GP This property, arising from the condition of group partitions, implies
identical views at all members of each partition. As per the protocol described, all
partitions resulting from change processing always become stable.

Requirements imposed by the E1 and E2 properties satisfy the condition
commonly known as liveness in distributed systems and those imposed by the GP
property satisfy safety [5, 27, 28]. Thus, the uniqueness of views and identical ordering of
changes at all operational members is guaranteed by GP.

C. REMARKS ON THE PROTOCOL STRUCTURE

The previous chapter described, in detail, how the protocol handles various change
events. The functions of the different components of the protocol are summarized in the
following paragraph. Unless specified otherwise, the term failure is assumed to imply a
perceived member failure that may have been caused by either a network failure or a

member's failure.

86

Any of the members may initiate a change when it perceives a change according to the
change events described earlier. The change initiator is called the coordinator for that
change and carries out the basic membership change protocol listed in Figure 17. The
normal two-phase change processing is illustrated in Figure 16. The first phase consists of
a multicast of the /nitiate message to all the members followed by collection of ACKs
from all members. As specified in Figure 20, the coordinator collects ACKs from all
members it believes to be in the group while, at the same time, trying repeatedly to send
the /nitiate message to those that it believes to be present but from whom a response is
not forthcoming due to a failure. The second phase consists of multicasting the (‘ommit
message. The members that do not send an ACK are isolated and gossiped about during
the commit phase.

The non-coordinator's actions of Figure 18 consist of sending the ACK message and
committing the change. Once the /nitiate message is received, the receiving mserver
prompts the coordinator repeatedly if a Commit message is not received, as specified in
Figure 15. If a Commit message is not received due to a failure, the mserver expecting the
message starts a broadcast election. As specified in Figure 30, all of the members that
have received but not yet committed the incomplete change elect the highest rank member
as the coordinator. The elected coordinator then resumes processing of this change as
specified in Figure 32. If the coordinator failure was initiated before any member could
commit the change, it is resumed with an /nitiate multicast by the elected coordinator. If
at least one member that participates in the election had committed the change, then the
newly elected coordinator resumes the change by sending a Commit message.

Due to the possibility of other changes occurring during a change processing, both the
coordinator and non-coordinators must take additional actions as specified in Figures 25
and 24, respectively. In Figure 25, the specification of Figure 20 is augmented to permit
the coordinator to handle messages in addition to the ACKs for the initiated change.

Depending upon the message received by the coordinator as it collects the ACKSs, it

87

switches to a higher priority change, enters an election, or delays the change it is
coordinating due to a previous change that may not yet have completed.

Similarly, Figure 24 is the augmented version of Figure 15 to handle situations in
which the non-coordinator does not get the expected Commit or Direct message. The
additional actions permit the non-coordinator to either switch to a higher priority change,
start an election if the coordinator has failed, or delay another coordinator that attempts to

install the next view change.

D. CORRECTNESS ARGUMENTS

Based on the protocol summary above and the detailed description given in the
previous chapter, a proof is presented that shows that the MS protocol has all the
properties as identified above for a correct solution to the GMP. Also shown is that a

more refined solution to the GMP defined earlier by Ricciardi and Birman [9] is possible.

1. Claim1
Change event processing always completes at both the coordinator and the
non-coordinator except when all members, including the coordinator, with knowledge of

the change fail.

2. Proof

Consider a change event change(subject, coordinator) initiated in P.

a. At the coordinator
Although the coordinator makes multiple attempts to deliver the Initiate
message to all perceived members of P, it does not require a predetermined number of
them to respond before it sends a Commit message (line 5, Figure 17). If the coordinator
switches to a higher priority change before it sends a Commit message, the information
about the old change is saved. The old change is reinitiated after all higher priority

changes complete.

88

b. At the non-coordinator
If the coordinator fails, at least one member times out on the Commit
message and starts an election (line 7, Figure 18). The highest rank member with the
change active is elected to resume the change (line 6, Figure 30). The fact that the
election is conducted among those with knowledge of the change ensures that the change
completes even if the coordinator and the cnly members to have committed the change

fail. This takes care of the invisible commits described by Ricciardi and Birman [9].

3. Claim 2
In any partition, either only one change event proceeds to the commit phase, or

members reaching the commit phase for different change events form separate partitions.

4. Proof

Initially, all members have identical views of the membership (definition of a
partition). In the set of all potential change events, there exists a unique priority order due
to the uniqueness of ranks, which order failures and departures, and network-level
addresses, which order joins. This permits every member receiving multiple /nitiate
messages before receiving any Commit message to switch to the highest priority change
that will install the next view. Overlapping of /nitiate messages to install successive views
with different view numbers is not possible (line 6, Figure 25).

Suppose a member receives a Commit message for the current change that will
change the view number from x to x+ /. Suppose this mserver then receives a higher
priority change that also corresponds to a view number change from x to x+/. It is
guaranteed that the sender of the higher priority change appears in the gossip
accompanying the received Commit message. This happens because the coordinator of
the lower priority change will have timed out on the coordinator for the higher priority
change and isolated it before generating a Commit message (line 6, Figure 17). This

ensures further partitioning if more than one change events proceed to the commit phase.

89

5. Claim3
If the coordinator fails after sending the commit message, the two-phase
protocol consisting of an election followed by a commit can solve the group membership

problem correctly.

6. Proof
Begin by proving the contrapositive statement:
The two-phase protocol consisting of an election followed by a commit cannot

solve the GMP correctly if the coordinator fails before sending the commit.

If the coordinator fails before sending the (Commit message, it is possible that one
of the members has not yet received the /nitiate message for the change. This member
would respond in the election with a (‘oord-Fail message that announces that it is not
aware of the change for which the election has been started. This member must receive an
Initia.. message before it can commit the change for which the coordinator failed. If the
Coord-Fail message is used to start the change in place of a separate /nitiate message, and
only a (Commit message is sent to complete the change, then the GP property can be
violated, as shown in the example below.

Consider a partition consisting of members m, m, m,, C,, and C,. Let C, initiate
change "a" by multicasting /nitiate,, which is received only by m, due to network failures.
(| fails immediately after sending /nitiate,, and this failure is perceived by m, which then
starts an election by multicasting Coord_Fail,. m, and m, participate in the election, but
(", does not because it has failed. However, before failing, C, starts another higher priority
change by multicasting /nitiate,, which reaches only m; due to network failures. Since
change "b" is a higher priority change, m drops change "a" as the current change. At this

point, m perceive (', failed and starts an election by multicasting (‘oord_Fail,

90

Throughout this time, m, waits to hear C,'s response to the election for change
"a", which will not arrive due to (','s failure before (Coord Fail, reaches it. Eventually, m,
times out in the electicn, determines that it must be the winner, and assumes the
responsibility for completing change "a". m commits change "a" and multicasts (‘ommit,
to the group with gossip about C's isolation. If the Commit, reaches m and m, after they
have switched to change "b" due to the Coord Fail, message, they will quietly discard the
(‘ommit, message due to its lower priority. Thus, m, will have committed change "a",
whereas m and m, will never commit it. This inconsistency violates the GP property and
makes the two-phase protocol incorrect. Thus, the contrapositive statement is proved.

The contrapositive statement proves Claim 3 above. It should be noted that the
failure of the coordinator after sending the Commit message with simultaneous failures of
all members that receive the Commit message is equivalent to the coordinator failing
before sending the Commit message. It is not possible to differentiate between these two
situations, thus the change must be completed in three phases. In the protocol described
in this thesis, the three phases are the broadcast election, initiate, and commit phases.
Thus, the Resume_change procedure of Figure 32 requires the elected coordinator to
complete the change with a Commit message if some member that had committed the
change participates in the election, permitting a two-phase processing of the coordinator
failure. Otherwise, the elected coordinator simply reinitiates the change, providing a

three-phase processing of the original change.

7. Theorem

The proposed group membership protocol is safe and live.

8. Proof
The liveness properties follow directly from Claim 1. The safety property

follows from Claim 2 and 3.

91

V. MEMBERSHIP SERVICE IMPLEMENTATION

This chapter describes a partial implementation of the MS specified in previous
chapters on a campus-wide set of LANs with UNIX-based workstations. The use and
limitations of the IP multicast capability are described, as well as the needs of the MS not
met by the IP multicast capability. To meet some of these unfulfilled multicasting needs, a
multicast emulation program, called mcaster, was developed. The design and
implementation of this program are described. A complete set of utility functions for use
by the mcaster and MS programs were developed, and are described in detail. High-level
descriptions of the algorithms used to implement mservers and Mls are presented. A
working implementation of the shell of the mserver program is also presented. The
software code for the mcaster program, the utility functions, and the mserver shell

program are listed in the Appendix to this thesis.

A. MULTICASTING

The use of muiticast message delivery is essential to the efficient and scalable
operation of an MS. In this section the general concept of multicast message delivery is
explained. Two implementations of multicast facilities are described: the [P multicast and

a specially written multicast emulation program, called mcaster.

1. IP Multicast
A recent addition to the IP suite of services is the IP multicast capability. A
multicast is the multipoint delivery of a single datagram, originated by a single sender and
delivered to multiple destinations which are part of a predesignated muliticast group. This
is in contrast to a broadcast, which is a mulitipoint delivery of a single datagram to all

connected machines, without any capability to limit the scope of the delivery, and a

92

unicast, which is a point-to-point datagram delivery. In effect, a multicast is the
generalized form of message delivery, providing broadcasts at one extreme and unicasts at
the other [29]. Previously, the capability to multicast efficiently was limited to single
LANSs, using the LAN hardware protocol. IP multicast provides a similar capability for
machines connected over the Internet, allowing the efficient multicast of a single datagram
to multiple receiving machines which are included in the multicast group, as shown in

Figure 48.

IP multicast
internetwork

sender

receivers

Figure 48: [P Multicast

a. IP Multicast Extensions
Full utilization of the new IP multicasting feature requires an extension to
the currently installed IP implementation on each host machine. The document which
describes how this extension is accomplished [6] defines three levels of conformance to
the specification: Level O, with no support provided for IP multicast (the current
configuration for most machines), Level 1 which provides limited support for sending

multicasts but not for receiving multicasts, and Level 2, which provides full IP multicast

93

support. Level 2 requires the implementation of the Internet Group Management Protocol
(IGMP), which manages the dynamic multicast groups which a host must join to receive
multicast datagrams. A depiction of the layered model for IP multicast is shown in Figure

49, provided by reference [6].

Upper-Layer Protocol Modules

IP Service Interface

P ICMP IGMP
Module

Local Network Service Interface

Local IP-to-local ad i
Network to- o(t;a a :Rnl:)s mapping
Modules 8

(e.g., Ethernet)

Figure 49: [P Multicast Layered Model

Full use of IP multicast of datagrams requires that hosts join a dynamic
multicast group. This group is identified exclusively and uniquely by the 32-bit IP address
used to transmit a datagram to the group. A set of IP addresses has been reserved
specifically for IP multicast. These are referred to as class D IP addresses, with the first
four bits of the address set to '1110' [6]. The range of these class D addresses is from
224.0.0.0 to 239.255.255.255, using the common dotted decimal notation to specify IP
addresses. Addresses between 224.0.0.0 and 224.0.0.255 inclusive are reserved for

multicast routing and maintenance protocols [7], but all others class D addresses are

94

available for use, providing a total multicast address space of over 268 million addresses.
A few of these addresses are permanently assigned, but most are available for transient
multicast groups. Additionally, the IP multicast specification provides a time-to-live (¢t/)
variable associated with each multicast, controlling the transmission scope of any multicast
datagram. With judicious use of the #/ variable, it is possible to use virtually any class D
address for a given host group without worrying about prior assignment of that class D
address.

As described earlier, full level 2 conformance requires implementation of the
IGMP to manage these multicast groups. As shown in Figure 49, IGMP is an integral part
of the IP protocol layer when implemented at a host or gateway. IGMP controls the
relationship between a multicast router and a set of host machines participating in a
multicast group. Multicast routers and host machines use IP datagrams to communicate
status back and forth, similar to the Internet Control Message Protocol (ICMP), which is
used to report errors and provide information about unexpected circumstances between
gateways and host machines [29]. IGMP provides a mechanism for hosts to dynamically
join and leave multicast groups, and for local multicast gateways to monitor the group
membership as well as provide correct routing of multicast datagrams. Hosts and local
gateways use IP multicast datagrams for all IGMP communications, using the "all hosts"
reserved multicast address of 224.0.0.1, to conduct very efficient communication [6]. The
local gateway maintains status tables to record local group membership of hosts. It also
periodically polls all connected hosts to determine if they are still part of the specified

groups. In this manner, a very efficient management of IP multicast groups is performed.

b. IP Multicast Implementation
The most common implementation of multicast applications involves the use
of the Berkeley sockets abstraction provided in most UNIX environments for network
[/0. Sockets are a generalization of a UNIX file object, and provide an endpoint for

communications [29]. There are normally three types of communication used for various

95

applications: reliable stream delivery, using SOCK _STREAM type of socket,
connectionless datagram delivery, using a SOCK_DGRAM type socket, and a raw type of
communication, using the SOCK_RAW type socket. [P multicast supports only the
SOCK_DGRAM and SOCK_RAW types of sockets, and provides no support for
connected sockets. Additionally, there are several types of system calls for sending and
receiving datagrams, most of which are similar to the system calls for UNIX file /O. IP
multicast supports only the sendfo, sendmsg, recvfrom, and recvmsg system calls for
datagram transmission and reception [7]. The sendto and sendmsg datagram transmission
calls require the destination (multicast or unicast) address as an input parameter. The
recvfrom and recvmsg system calls extract the sender's address from the header of the
incoming datagram. Together, these calls provide a very efficient means of combined
unicast and multicast network communications, since the only difference between
communicating with a single host or a multicast group is the address used, and this
address is readily extracted in exactly the proper format to send a reply to the sender for
either a multicast or unicast transmission. The format of the IP address is contained in a C
programming language structure, called sockaddr_in, as shown in Figure SO, containing

the address family, port number and IP address for the particular host.

Address Family Protocol Port
IP address

Unused (0)
Unused (0)

Figure 50: IP Socket Address Structure (Sockaddr _in)

96

2. Mcaster program

IP multicasting is a relatively new innovation, and is not widely available at this
time. Due to the very limited implementation of level 2 conformance to the IP multicast
specification on most current computer networks, it was decided to develop a program
that would emulate the IP multicast capability for the currently available unicast
environment. The goal was to develop a program that would emulate the services
provided by IP multicast as transparently as possible, hopefully to the extent that a user or
application program would not need to be concerned with which environment was actually
being used. This involved simulating all of the functionality provided by IGMP at the host

and gateway level.

a. Mcaster Design Decisions

The overall scheme chosen for the IP multicast emulator, called mcaster,
was to have a "daemon" process running at a well-known site, which would act as an
intermediary between the members of a multicast group, providing essentially the same
services as those provided by IGMP, such as’ controlling members joining and leaving
groups, and the routing of multicast datagrams to all members of a particular group. The
primary difference between an IP multicast gateway using IGMP and the mcaster program
is that mcaster enjoys none of the hardware support that a router would include -
especially the ability to send a datagram over multiple interfaces at once. The mcaster
program would be running on a standard host computer, probably using a single interface
to the internetwork. This limitation is the most significant difference between an IP
multicast router and an mcaster host computer, whereas a router can send the same
datagram to multiple recipients simultaneously over multiple network interfaces, the
mcaster must iteratively send the datagram over one interface, causing a significant

performance degradation over IP multicast. However, the primary goal of the mcaster

97

emulator was to provide the capability of multicasting, not to match the performance
possible through hardware supported multicasting.

The primary reason for developing the mcaster program was to provide a
multicast capability for use by the membership service under development in environments
which did not support IP multicast. For this reason, the message format used by the
mcaster program was chosen to correspond as closely as possible to the expected needs of
the membership service that it would support. The basic message format for the mcaster
program was designed to also be the basic message format for the MS. This n e
format was previously described in Figure 13 of Chapter IV. Special message types are
reserved for mcaster control messages. Although the mcaster program was developed to
support the MS, it also provides a general muiticast capability for any program or user.
The only requirement for the use of the mcaster program is that messages sent by the
application program using mcaster must include a header structure in the format described
above. The mcaster program will then be able to deliver messages of any type to a
designated multicast group.

To make the mcaster daemon as capable as possible, it was decided to
permit each mcaster daemon to support any number of separate groups, each with an
unlimited number of members. The primary data structure chosen to store state
information for all groups supported by an mcaster was a list of groups, each with a list of
members, as shown in Figure S1. Groups and their members are dynamically added to and
removed from the lists as needed.

A host computer desiring to join an mcaster multicast group simply formats
a message with the JOIN_GROUP message type and sends it to the well-known IP
address of the mcaster. The mcaster processes the join request and responds with a
similar message indicating success or failure of the join request. Leaving an mcaster
multicast group is done in exactly the same manner, with the message type set to

LEAVE_GROUP. Any message received by the mcaster which is not a join or leave

98

request is considered to be a message to multicast to the group, and is iteratively sent to
each member of the indicated group using the sendfo socket system call. Whereas IP
multicast groups are exclusively and uniquely identified by their class D [P address,
mcaster multicast groups are identified by the combination of a group name and an

mcaster IP address.

group_listoL _—®last_group

name | name | m__ugs_
next o next @ next @
members members members
last @ last & last

addr | addr addr |
loop loop loop

next next next

addr addr

loop loop

next '® next

| addr
loop
next

Figure S1: Mcaster Data Structures

b. Differences from IP Multicast
Originally, it was hoped that the use of the mcaster multicast emulator
would be completely transparent to a user or application program; that is, exactly the same

system calls would be made with nearly identical arguments for either multicast

99

environment, with identical results, in a manner similar to that shown in Figure 52. It was
soon realized that there were several deviations from the desired transparency that would

be necessary to make the mcaster program as capable as desired.

sender

, .
mcaster
>0

C
v) mfastr J

O = unicast, IP multicast socket
A = mcaster socket

Figure 52: IP Unicast, Multicast, and Mcaster Using Separate Sockets

The first deviation had to do with the ability of an mcaster to manage more
than one group. Whereas I[P multicast groups are exclusively and uniquely identified by
their class D IP address, mcaster multicast groups are identified by the combination of a
group name and an mcaster IP address. Since an mcaster is a daemon process running on
a specific host machine with a unique IP address, all of the groups managed by that
mcaster must share the same group IP address of the host machine. This is in contrast to

IP muiticast groups, which may share a common local IP multicast router, but each still

100

e e I e B = - TR T R T = — Y

have unique IP addresses. The only implication of this deviation is that the group name
had to be included in the message itself, so that the mcaster could extract the group name
and reference the desired group. With IP multicasts, the group name would not be
required, since the identity of the group is implicit in the unique group address.

The second deviation from the desired transparency between IP multicast
and mcaster multicast had to do with the procedure for joining and leaving groups. This
deviation was inherently necessary due to the fact that mcaster emulates the functionality
of IGMP, so a mechanism had to be created to perform the same functions. IP multicast
uses the setsockopt system call to make a socket multicast capable. The sockaddr_in
address structure bound to the socket is first loaded with the class D address of the group.
The setsockopt call is then made with the [P ADD MEMBERSHIP option set [7]. If the
address used is a legitimate class D address, then IGMP adds the calling host to the
specified multicast group. Hosts leaving a multicast group perform the same routine, with
the setsockopt option set to [P DROP_MEMBERSHIP. As described earlier, a host
desiring to join or leave an mcaster group would simply format a message with the
appropnate message type and send it to the host running the mcaster. The functionality
required to join either an IP multicast or mcaster group can easily be encapsulated within a
single procedure, perhaps in a library file, giving the desired transparency between the two
methods of multicasting at the procedure call level. The same holds true for the procedure
to leave either type of group.

A third deviation between the two types of multicasting did not directly
affect the transparency, but could have adverse effects on the performance of the mcaster
program. Unlike IGMP, once a host joined an mcaster group, no monitoring of group
members is performed. The purpose of this monitoring in IGMP is to detect members no
longer participating in the group and drop them from the membership. It was decided that
this was unnecessary for the mcaster; the lack of a monitoring capability did not directly

affect the ability to multicast nor the desired transparency between the two types of

101

multicast, since the user would normally not be aware the monitoring was taking place at
all. Instead, it was left to the application program to correctly leave an mcaster group.
Failure to properly leave an mcaster group would burden the mcaster daemon with
sending extra messages to hosts no longer participating in the group, incz *asing the time
required to multicast to other legitimate hosts in the group, as well as the overhead
required to store the state of members no longer participating in the group. The
functionality required to monitor the status of group members, to detect non-participation,
and to remove non-participating members could be added to the mcaster program at
some future time if desired, but would likely affect the transparency of the mcaster
program to application programs.

The final deviation in the transparency between the two types of multicasting
was the most significant. Due to the sender's IP address being included in the datagram
header, the receiving host can easily extract the sender's address using the recvfrom
system call. Normally this is a very desirable trait, useful for quick and easy replies to the
sender of a datagram. The problem encountered was that the mcaster program acts as an
intermediary for all multicasts between group members, extracting the group name from
the message to reference the proper group, then sends the original message to all
members. In so doing, the sender's address in the datagram header is changed to the
mcaster host instead of the original sender. It was therefore no longer possible for a
receiving host to extract the original sender's address from the datagram header; instead
only the mcaster's address could be recovered. To remedy the inability of a receiving host
to determine the original sender of an mcasfer multicast, it was required to prepend the
original sender's address to a normal message structure before it was encapsulated in an IP
datagram and sent to all members. An illustration of the extended message format is
shown in Figure 53. There were two choices as to how to handle the extended format
message at the receiving hosts. The first choice was to check every message and decide

whether it was a normal or extended format message, and process it accordingly. The

102

Address Family | Protocol Port
IP address
Unused (0)
Unused (0)
vers r checksum
group_name
authentication
_group_view sender gid | gid
msg_type subject_gid addr addv
subject addr rank rank
subject_rank nexte- nextoy
exclude list o
excl list len | subj list len ﬂ gid gid |
subject_list o addr addr
data len | rank rank
data O nexto nexte
Z—b"data string"

Figure 53: Extended Format Mcaster Message Structure

second choice was to have two separate receiving sockets: one for normal messages and
one for the extended format messages from an mcaster multicast. The latter method was
chosen for the simplicity and clean separation it provided between the two multicasting
methods, as shown in Figure 54. The drawback to the chosen method was that an
application program using an mcaster multicast would have to manage an extra socket at
all levels of the program, virtually eliminating the desired transparency. However, the
amount of overhead required to manage the extra socket is insignificant, and the use of the
extra receiving socket could easily be hidden in a separate receive routine in a library file,
similar to the join and leave procedures used to hide the access to the two multicasting
methods.

The deviations noted above prevent the user from being totally unaware of
which method of multicasting is being used: an IP multicast or an mcaster multicast.

103

member to member unicast

join, leave, meast - o -]
e T =l = BN C)
R

()
sender join & leave ACK ")\@

receivers

O = unicast, [P multicast socket
A = mcaster socket
=

ﬁ = normal message a = extended message (for mcaster mcast)

Figure 54: Multicasting Using Extended Format Mcaster Messages

However, it would be impossible to completely remove the awareness of the multicasting
method used, since an IP multicast only works within a limited range of IP addresses, and
the user would have to select the proper IP address to use if intent on using IP
multicasting. The deviations from IP multicasting listed above required by the mcaster
program would not be evident in the normal multicasting of IP datagrams; the user could
confidently select an IP address and name for the multicast group and then use the library
calls described to join the group, send and receive multicast and unicast messages, and
leave the group, without ever being aware of which method of multicasting was being

used. Thus, the desired level of transparency in multicasting methods was achieved.

c. Mecaster Algorithm
The algorithm for the mcaster program is listed in Figure 55 and described

as follows. Line 1 is the initialization of the single socket used by the mcaster program for

104

all YO. Line 2 begins the main loop of the program, an infinite loop of waiting to receive

a message, then processing the received message and sending a reply or multicast as
necessary. Lines 3 and 4 describe the process of blocking to receive an incoming message.
Lines 4 and 5 check the received message type for a join request. Lines 5 through 12
perform the join_group sequence. In line 6, the group list is searched to determine if the
group already exists or not. If the group is not located in the group list, lines 7 and 8 add

the new group to the list. If the group does exist, then lines 9 and 10 determine if the

Mcaster
/* Emulates IP Multicast using iterative unicasts */
1. initialize socket (group address)

2. wait for incoming messages

3. when message received

4 if (messagetype = JOIN_GROUP or LEAVE_GROUP)
5. if JOIN_GROUP)

6. search group list for group (group name)

7 if (group not located)

8 add group to group list

9. else /* group located */

10. search member list for member (member address)
1. if (not already a member)

12. add member to member list

13. else /* LEAVE _GROUP */

14. locate group (group name) or indicate error

15. locate member (member address) or indicate error
16. if (located)

17. remove member from member list

18. if (member list is empty)

19. remove group from group list

20. form ACK message

21. send ACK message to requesting member

22. else /* multicast to all members */

23. for (all members in specified group)

24, if (not sender or loopback)

25. send message to member

26. goto line 2

Figure 55: Mcaster Algorithm

105

member is already in the member list of that group. If it is a new group or if the member
is not already in the member list, then the member is added to the member list of the
specified group in lines 11 and 12. Lines 13 through 19 perform the similar procedure for
leaving a group. Line 14 and 15 locate the specified member. Line 16 and 17 remove the
member from the member list. If the member list for the specified group is now empty,
lines 18 and 19 remove the group from the group list. Lines 20 and 21 complete the join
or leave sequence by forming and sending an acknowledgment message to the requesting
member. Lines 22 through 25 perform the multicast of any message other than a join or
leave request. Line 24 ensures that the sender does not receive the multicast message if
the no loopback option is selected. Line 26 completes the main loop and returns to line 2
to begin again.

The actual code for the mcaster program is included in the Appendix in the
program file mcaster.c. The utility functions used by the mcaster program are included in

the library files mcaster.h, msutil.h, and msutil.c, also included in the Appendix.

B. MSERVER

The functioning of an mserver process has already been explained from a procedural
point of view. The monitoring and change-processing protocols defined in Chapter IV
each explain the sequence of actions performed by an mserver with respect to one aspect
of the overall operation of the MS and an mserver. The protocols are described in a
procedural form, implying that an mserver performs the complete set of actions that make
up each protocol sequentially before beginning a new set of actions. In reality, each
mserver must continually process incoming messages and changes to the internal state of
the mserver concurrently. It is true that for strong membership consistency guarantees,
only one change will be committed by a core-set of mservers at a time; however, during
the processing of that change, many other events must be registered and processed. These

other events include the reception of messages of all types: some that affect the current

106

change; others that do not, but must be stored nonetheless, and some that require an
immediate response, such as a monitoring query. Other events include the expiration of
timers or a change in the internal state caused by processing the current change.

Simply put, an mserver process performs three primary actions: 1) it receives and
stores incoming messages, 2) it changes the internal state in response to internal events or
incoming messages, and 3) it sends outgoing messages. The incoming and outgoing
messages may be unicast or multicast, depending on the circumstances. In this section, the

operation of an mserver process is described in detail from an implementation viewpoint.

1. Internal State and Data Structures

Each mserver process has a dual personality: it is a member of a core-set of peer
mservers, as well as the parent of a child-set of mservers. For this reason, the set of data
structures and variables used to maintain the internal state of an mserver must be
replicated to support both identities. Additionally, each mserver must maintain
information about all application groups that it supports. Figure 56 illustrates the data
structures and variables used to maintain the internal state of an mserver. Each of these
data structures will be described in detail in the following paragraphs. Table 6 lists the
variables used to maintain the mserver's internal state and their meaning.

As shown in Figure 56, an mserver maintains two core-tables, one for the peer
core-set, and one for the child-set. The core-tables are used to maintain the membership
information for each the mserver's core-sets. The index into the table is the gid of each
mserver in the core-set. The IP address of each mserver is stored to allow unicast
message addressing. The rank of each mserver is maintained, with a rank of 0
corresponding to the highest rank and most senior mserver in the core-set. The ¢w and
ccw variables are integer pointers representing the clockwise and counterclockwise
neighbors of each mserver. These links represent the pairwise monitoring-set; the
clockwise neighbor is the monitor and the counterclockwise neighbor is the monitored

mserver. It is important that all mservers know the exact monitoring relationship of all

107

core-set child-set applications
core-table chil le

zmps@é

group variables

fﬁhm% faﬂumE
B ='1= = I N ==

core-set state variables| child-set state variabli

Figure 56: Mserver Data Structures and Internal State

other core-set mservers, so that the correct monitoring arrangements can be made by all
each time the core-set membership changes. Figure 57 illustrates the structure of these
core-tables, and Figure 58 illustrates a core-set of mservers corresponding to the core-set
listed in the core-table of Figure 57.

Each mserver maintains four lists for each side of internal state. an mserver
failures list, a physical change requests list, an application group change requests list, and a
list of all application groups supported by that core-set. The failures list is a list of all
mservers that have been detected failed by this mserver, but not yet processed out of the
core-set. The format of the list is the same as the exclude_list and subject_list shown in
Figures 13 and 53. The physical change request list is shown in Figure 59. This list stores
all of the relevant change data for each physical change request received at an mserver.
The data is copied from the received message and a new entry is added to the list of
pending changes. The application group change requests list functions in the same
manner as the physical change requests list, but is maintained separately to simplify the

prioritization of pending physical and application change requests. The list of application

108

TABLE 6: MSERVER INTERNAL STATE VARIABLES
Note: Separate copies of all state variables are maintained by each mserver for

the core-set and child-set of which it is a member.

Variable
group_name

Description
name of core-set

! group_address

address of core-set

group_size size of core-set

group_view current group view of core-set
authentication |used for core-set security

mygid group identity number of this mserver
cwW clockwise neighbor (monitor)

cCW counterclockwise neighbor (monitored)
core_table pointer to core-table

exclude_list

list of mservers to be excluded from core-set due to failure

subject_list

list of subjects for a Merge or Split, or failed mservers

current_change

pointer to structure for data about current change

previous_change

pointer to structure for data about previous change

failures list of failed core-set mservers waiting to be processed

requests list of pending physical change requests received by core-set
app_changes list of pending application change requests submitted to mserver
timeouts timeout vector (recv, query, reply, messg, ACK)

retries retries vector (reply, messg, ACK)

expected_type [message type expected for current processing

responses count of number of responses (ACK's and Coord_Fails)

app_group_list

list of application groups supported and relevant data

groups is illustrated in Figure 60. The fields in each entry in the application group list
represent all of the data that the mserver must maintain for each application group
The

supported. By keeping the data stored minimal, scalability is maintained.

group_name is the string name for the application group. The core_set and name_set

fields are boolean variables to indicate whether this mserver is in the core-set or name-set

109

gid address rank cw ccw fla lﬂagz
0131.120.50.103| 6 | 1 | §
1[131.120.50.110| 0 | 3 [0
2
3[131.12050.105| 1 | 8 | 1
4
5[131.120.50.108 | S [0 | 7
61131.120.50.106 | 3 | 7 [8
71131.120.50.112] 4 | S | 6
81131.12050.115| 2 | 6 | 3
9

MAXTBLSIZE

Figure 57: Mserver Core Table

Figure 58: Mserver Core-set Corresponding to Core Table in Figure 57

110

_elast_request

requests \

C group_name group_name group_aame
group_view | sender_gid group_view | sender_gid group_view | sender_gid
msg_type | subject_gld mag_type | subject_gid msg_type | subject_gid
subject_addr subject_addr subject_addr
subject_rank subject_rank subject_rank
exclede_list n exclude_list exclude_list
xcl_list_len [subf lat_len xcl_list_len [subj_lst_len lexcl_list_len [sub]_list_len
subject_list Lo subject_list ry subject_list
data_len data_len data_len
P data data data
Q} next o1 next @ next
"datastrng" g | (g4 (514] g]
rank rank rank ramk ramk
addr addr addr addr addr
next 4 next 4 next next 4 Bext
i
ramk rank
addr addr
next A next

Figure 59: Mserver Requests List

group_list last_group
group name
core set core set core set
name set name set name set
members members members
next @ next @ next G)

Figure 60: Mserver Application Groups List

111

of the application. The members field is a list of child mservers with application members
in their hierarchy. Only these child mserver will be included in the message exchange and
change processing for the application group which they support. Other mservers will not
be impacted by the changes to application groups which they do not support, with the
exception of processing core-set changes if they happen to be in the core-set for the
application. Figure 61 shows the data structure used to store information related to the
current and previous changes. The current_change structure maintains a separate exclude
list from that included with the mserver's internal state, so that any changes made to the
exclude list while processing a change that is subsequently dropped do not affect the main
exclude list of the mserver. When the change is committed, the main exclude list for the

core-set is updated with the new information contained in the current_change exclude list.

2. Algorithm and Explanation
The general algorithm for an mserver is listed in Figure 62. As described
previously, the algorithm for the mserver allows continual processing of incoming

messages and internal events, even while a current change is being processed. Outgoing

current_change previous_change
coordinator coordinator
subj gid subj_gid
subj addr subj addr
subj rank subj rank
up name group_name
type type
exclude list
excl list len

Figure 61: Mserver Current and Previous Change Storage

112

messages can be sent at the same time as well. The line-by-line description of the

algorithm follows.

The mserver is started with a command line call, as shown in the header of Figure
62. The group_address is only included if this mserver is the first to join a new core-set,
thus creating the core-set. Lines |1 and 2 make system calls to obtain information about

the host computer and core-set multicast group. These calls are made with the name as an

Mserver (group_name, [group_address])

/* group_name is the string name of the core-set, group_address is an optional IP

address of the multicast group for the core-set, included only when a new

core-set is being created */

/* Initialize mserver */

obtain_info (host_name, host_address)

obtain_info (group_name, group_address)

initialize sockets (ms, mc)

initialize (internal state)

set timers (recv, query, reply, messg, ACK)

* Join core-set */

send_message (Join_message, group_address)

messg = Reliable_receive (Init_message, Msg_Query_message)

if (messg = Init_message) /* successful join */
join_mcast_group (group_name, group_address)

10. update (internal state)

11. else /* unsuccessful join */

12. exit and report error

/* Begin main processing loop */

13. for (;;) /* infinite loop */

14, receive_message (messg, recv_timeout)

15. update (intemnal state)

16. process_message (messg, intemal state)

17. process_lists (intemnal state)

18. process_timeouts (internal state)

WRNONTJZUnhE W —

Figure 62: Mserver Algorithm

113

input argument, and return the respective address. The core-set multicast address is
obtained from a locally maintained, well-known file, mapping group names to multicast
addresses in the local environment, if the group already exists. If the group does not exist,
the procedure registers the group_name and corresponding group_address in the file.
Lines 3 initializes the two sockets used by the mserver: ms for incoming unicast messages
and all outgoing messages, and mc for outgoing multicast messages (to utilize the mcaster
utility, if needed). Line 4 initializes the internal state of the mserver, represented by the
data structures and variables for each part, as shown in Figure 56. Line S initializes all
timeout variables used as timers for the reception of messages.

Now that the mserver has been created and initialized, lines 6 through 12 control
the mserver's attempt to join the desired core-set. If a new core-set is being created, there
is no need to send and receive messages to join a core-set. The mserver simply updates
the internal state to reflect that it is the only mserver in the new core-set. If the core-set
already exists, a join request message is sent to the core-set multicast address in line 6,
followed by a Reliable_receive of the Initial Parameters message from the core-set in line
7. The Initial Parameters message contains the complete state of the sending mserver,
which was the coordinator for the join request of this new mserver to the core-set. Since
the state of the coordinator is also the state of all other mservers in the core-set, the
joining mserver receives the complete state of the core-set in this message. An illustration
of the Initial Parameters message is shown in Figure 63. If the Initial Parameters message
is returned, the mserver joins the muiticast group for the core-set. This is a separate
action from joining the core-set; the core-set must have been joined first before allowing
the new mserver to become a member of the core-set multicast group. If for some reason
the joining mserver is unable to join the multicast group, it will exit and return an error
code to the caller. The core-set will soon detect the new mserver failed and remove it

from the group automatically.

114

After successfully joining the core-set, the mserver begins the main loop of

operation, shown in lines 13 through 18. The mserver continually repeats a cycle of
receiving any incoming messages, processing the received message, then processing any

pending failures or requests, and finally checking the internal timers to determine if any

vers | checksum
group_name
authentication
group_view coordinator_gid
INIT STATE subject_gid
subject_addr
subject rank
exclude list
excl list len | 0
NULL
data len I

No. of messages in request list

Coordinator's core-table

Coordinator's request list
(if any)

Figure 63: Initial Parameters Message Format

messages have exceeded their timeouts. In line 14 a timed receive function is used; the
process is idle waiting for any incoming message or the timeout period to elapse. This is
similar to a combination of the select and recvfrom UNIX socket calls. The timeout for
the receive function is a relatively short period, and in the absence of any incoming

messages, acts as the clock for the mserver. Each iteration of the main loop represents

115

one "tick" of the logical event clock for the mserver. All other timeouts used are multiples
of this basic receive timeout, so that messages are timed in terms of a real clock as well as
the logical event clock. When the receive function returns, either a message has been
received, or the timeout period expired. If a message was received, it is processed in line
16. The message is decoded, and the appropriate action taken depending on the message
type.

Next, the failures list, requests list, and application group requests list are
checked for pending items. The lists are checked this order, so that the failures list has
priority. Any mserver failures queued are "batched” and processed as one change to the
core-set membership, with the rank of the highest ranking subject used for the change
priority. Upon completion of processing the failures list, the requests list and application
group requests lists are checked, in that order. Only one pending change is processed
each main cycle; the request at the head of the selected ‘queue is copied into the
current_change structure and processed as the current change. The request is not
removed from the head of the queue until the change is committed, so that if the change is
dropped, the request will remain at the head of the queue. Once the change is committed,
the change data is copied from the current_change structure to the previous_change
structure.

Finally, all timers are checked to see if any expected message has exceeded the
associated timeout period. If any timers expired, the internal state is updated, messages
are sent as needed, and the timers are reset. This completes the main loop processing,
which is then repeated continually. The code for a partial implementation of an mserver

process is included in the Appendix in file mserver.c.

C. MEMBER INTERFACE

As discussed previously, the primary purpose for the Ml is to act as an interface
between the application and the MS hierarchy. The MI accepts membership change and

116

information requests from the application processes and relays the requests to the LAN

mservers for processing. When the change has been processed, the Ml accepts and relays
the change data to the application processes. The MI must also respond to periodic

monitoring queries from the LAN mserver.

1. Internal State and Data Structures

The MI maintains a limited amount of information about the MS hierarchy and
the application process group members that it supports, as shown in Figure 64. The only
MS hierarchy information stored is the name and IP address of the LAN mserver. The MI
maintains a list of the application groups that it supports. This list is very similar to the
application groups list maintained by mservers, except the Ml is not part of any core-set or
name-set. Additionally, the MI must maintain a list of all members running on the host
computer for each application group. Information about other member processes is
obtained by requests to the MS hierarchy. An optional QoS feature would allow the Ml
to store limited information about all application member processes for a particular
application, thus increasing the storage requirements at the host computer, but greatly

reducing the latency to obtain member information.

groups

group variables
mserver variables

Figure 64: MI Data Structures and Internal State

117

2. Algorithm and Explanation
Figure 65 lists the algorithm used by the M1. The algorithm is similar to that of
an mserver, but much simpler. The same idea of a continual cycle of receiving messages,
processing the messages, processing pending requests, and processing expired timeouts is
performed. The timed receive function is used again, so that receive cycles act as the

internal event clock. The initialization in lines 1 through 11 is very similar to that of an

MI (mserver_name)
/* mserver_name is the string name of the LAN mserver */
/* Initialize M1 */

1. obtain_info (host_name, host_address)

2. obtain_info (mserver_name, mserver_address)
3. initialize socket (ms)

4. initialize (intemal state)

5

. set timers (recv, messg)

/* Register with LAN mserver */

6. send_message (Join_message, mserver_address)

7. messg= keliable_receive (ACK_message, Msg_Query_message)
8 if (messg = ACK_message) /* successful */

9. update (intemal state)
10. else /* unsuccessful */
1. exit and report esor

/* Begin main loop */

12. for (;;) /* infinite loop */

13. receive_message (messg, recv_timeout)
14. update (internal state)

15. process_message (messg, internal state)
17. process_lists (intemal state)
18. process_timeouts (internal state)

Figure 65: MI Algorithm
mserver, except the MI does not join a group, but instead registers with the LAN mserver.

The main loop of lines 12 through 18 is nearly identical to that of an mserver, except that

there are many fewer events to process at each stage. The only messages received by an

118

MI are application membership change and information requests, Direct messages from
the LAN mserver, and monitoring (Juery messages from the LAN mserver. The only
messages that an MI sends are Submit messages for application change requests, Reply
monitoring messages to the LAN mserver, and configuration messages to the MS. The
MI only needs to track two timers: the main receive timer and a message timer for
expected responses. Incoming requests are added to a pending requests list if a current
request has been submitted to the LAN mserver. As each change request is completed
with the reception of a Direct message, a new request is taken from the head of the queue

and processed.

119

VII. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This thesis presented a globally scalable, fully decentralized group membership service
which provides the framework for distributed applications of any size and distribution. A
complete description of the architectural design and protocol specifications were
presented, and an implementation of the membership service was described.

The most significant contribution of the group membership service described herein is
the total scalability. The MS provides a consistent suite of services to client applications
distributed on any scale, from a single LAN to the worldwide internetwork. No other
membership protocol or service provides this capability. Other noteworthy contributions
include the decentralized and efficient nature of the MS, and the concept of providing
numerous user-selectable Quality of Service options to tailor the MS to the needs of each

client application.

B. FUTURE WORK

Although a great deal of work was accomplished .n the design and partial
implementation of the MS described in this thesis, much more work remains to be done.
First, to demonstrate that the MS is truly scalable to global proportions, a working
implementation of the complete MS must be developed and installed on progressively
larger scales. Second, complete performance analysis of the operation, overhead, network
constraints, service latency, and functionality of the MS must be accomplished. Third, a
complete formal specification of the protocols used by the MS must be accomplished, with
a reachability analysis conducted to demonstrate formally correct operation. It is

recommended that an extended communicating finite state machine (CFSM) modeling

120

-]

method be used, such as Systems of Communicating Machines (SCM) [30}, for the formal
specification. Finally, the MS must be modified to take advantage of the reliable,

high-speed networks which are currently being deployed. Advances in network
technology, such as ATM (Asynchronous Transfer Mode) and Sonet (Synchronous optical
network), provide a different network model than the conventional IP-based model used
for the design of this MS. The conceptual design described in this thesis remains valid for
any network model; however, by adapting the protocol specifications to take advantage of
reliable, high-speed networks, a more efficient and capable version of the MS can be

realized.

121

APPENDIX

/*******4*#**#****t**#****#*********#*#*****#****t***#*#*t*#*##****tt*

* MCASTER.H ver 1.0

* Header file for MCASTER.C

* Program to emulate IP multicast in a unicast environment.
*

* Written by Dave Neely, March 1994.

* Modified: 4/23/94

#*#t*#*******************#*****************t*****t*******#**t*t**/

#define MC_PORT 3000
#define JOIN_GROUP 120
#define LEAVE_GROUP 121
#define JOIN_ACK 130
#define DUP_MEMBER 131
#define NEG_JOIN 132
#define LEAVE ACK 140
#define NO_GROUP 141
#define NO_MEMBER 142
#define NEG_LEAVE 143
#define NO_LOOP 0
#define LOOP 1

122

/#‘#“*‘t“t‘###t#t#tt‘.‘tlt*##tt‘t‘ttt‘t“*#t#‘#t.‘t#.‘t#tit‘l‘.tt‘#‘

*MSUTILH ver 1.0
* Header file for Membership Service (MS) utilities

*

* Written by Dave Neely, March 1994.

* Modified: 4/23/94

###*‘#t********##************#*#t**#***#**t*#**t****t#*#*****t#**#t**/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if h>
#include <sys/ioctl.h>
#include <netinet/in.h>
#include <string.h>
#include <netdb.h>
#include <sys/time. h>

#define VERS

#define MS PORT
#define MAXGROUPNAME
#define MAXMSGLEN
#define SEC

#define T_RECV
#define T REPLY
#define T_MESSG
#define T ACK
#define T_QUERY
#define MAXTBLSIZE
#define MAXTIME

#ifdef IFF_MULTICAST
#ifndef MULTICAST
#define MULTICAST

1
2900

32

1024
1000000
1*SEC

5*T _RECV
T_REPLY

T REPLY
60*SEC

250
%13

123

/* version number */

/* unicast & IP multicast */
/* chars */

/* 1kB */

/* 1 million usec */

/* recv cycle timeout */

/* incoming reply timeout */
/* incoming messg timeout */
/* incoming ACK timeout */
/* timeout to send another query */
/* max size of group table */
/* to reset timeouts */

#endif
#endif

/* monitoring message types */
#define QUERY 0
#define REPLY 1

/* mserver INITIATE message types */

#define M_JOIN 10
#define M_LEAVE 11
#define M_SPLIT 12
#define M_MERGE 13

#define M_ADD_PARENT 14
#define M_DEL PARENT 15

#define M_STATS S 16
#defineM_STATS L 17
#define M_FAIL 18

#define M_MULTI_FAIL 19
#define M_COORD _FAIL 20

/* change sequence message types */

#define ACK 2]
#define COMMIT 22
#define WAIT 23
#define MSG_QUERY 24
#define INIT 25

/* external physical requests to core-set */
#define M_JOIN_REQ 30
#define M_LEAVE_REQ 31
#define M_SPLIT_REQ 32
#define M_MERGE_REQ 33
#define M_ADD_PAR REQ 34
#define M_DEL_PAR_REQ 35

ﬁ

124

/* monitoring query */
/* monitoring reply */

/* mserver join_group*/

/* mserver leave */

/* mserver split_group */

/* mserver merge_group */

/* mserver add parent */

/* mserver delete parent */

/* mserver group stats - short */
/* mserver group stats - long */
/* mserver fail */

/* multiple mservers fail */

/* coordinator fail */

/* mserver join_group request */
/* mserver leave_request */

/* mserver split_group request */
/* mserver merge_group request */
/* mserver add parent request */

/* mserver delete parent request */

#define M_STATS_S REQ 36
#define M_STATS L REQ 37

#define A_JOIN 70
#define A_LEAVE 71
#define A_SPLIT 72
#define A_MERGE 73
#define A_STATS_S 74
#define A_STATS L 75
#define SUBMIT 76
#define DIRECT 77

/* mserver group stats - short */
/* mserver group stats - long */

/* application group INTITIATE message types */

/* app join_group */

/* app leave_group */

/* app split_group */

/* app merge_group */

/* app group stats - short */
/* app group stats - long */
/* app change submission */
/* parent's change directive */

/* application group request message types */

#define A_JOIN_REQ 80
#define A_LEAVE_REQ 81
#define A_SPLIT_REQ 82
#define A_ MERGE_REQ 83
#define A_STATS_S REQ 84
#define A_STATS_L_REQ 85

struct table_entry {
u_long addr;
u_short rank;
u_short cw;
u_short ccw;
u_char flagl;
u_char flag2;

%

struct gid_entry {
u_short gid;
u_short rank;
u_long addr;

/* app join_group request */
/* app leave_group request */
/* app split_group request */
/* app merge_group request */
/* app group stats - short */

/* app group stats - long */

/* member's entry in set table */

/* IP address of member */

/* member's rank */

/* gid of clockwise member (to "left") */
/* gid of counterclockwise member */

/* status flag for each member */

/* status flag for each member */

/* used for gid lists */

/* member's group ID */
/* member's rank */

/* IP address of member */

125

struct

N

gid_entry *next;

struct message { /* to build and receive messages */

u_short
int
char
u_short
long
u_short
u_short
u_short
u_long
u_short
struct
u_short
struct
u_short
char
int

} messg;

vers,

checksum;
group_name[MAXGROUPNAME];,
group_view,
authentication;
sender_gid;

msg_type;

subject_gid,;
subject_addr;
subject_rank;
gid_entry *exclude_list;
excl_list_len;

gid_entry *subject_list;
subj_list_len;

*data;

data_len;

struct group_state{ /* core and child set internal state */

char
struct
u_short
u_short
long
u_short
u_short
u_short
struct
struct
u_short

group_name{MAXGROUPNAME];
sockaddr_in group_addr;
group_size;

group_view;
authentication;

mygid,

cw,

ccw,

table_entry table;
gid_entry *exclude_list;
excl_list_len;

126

X

struct
u_short
char

int
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
u_short
u_short
u_short
u_short
u_short
u_short

gid_entry *subject_list;
subj_list_len;

*data;

data_len;

change_data *current_change;
change data *previous_change;
gid_entry *failures;

gid_entry *last_failure;
messg_entry *requests;
messg_entry *last_request;
messg_entry *app_requests;
messg_entry *last_app_request,
timeval recv_timeout;

timeval query_timeout;
timeval reply_timeout;

timeval messg_timeout;
timeval ACK_timeout,
r_retries;

m_retries;

a_retries;

ACK_count;
change_underway,
elect_coordinator;

struct change_data { /* current and previous change info */

u_short
u_short
u_long
u_short
u_short
u_short

coordinator,

subj_gid;

subject_addr,

subj_rank;
group_name[MAXGROUPNAME];
type,

127

struct messg_entry {

char
u_short
long
u_short
u_short
u_short
u_long
u_short
struct
u_short
struct
u_short
char

int
struct

/* entry in requests lists */
group_name[MAXGROUPNAME],
group_view,

authentication;

sender_gid,;

msg_type,

subject_gid;

subject_addr;

subject_rank;

gid_entry *exclude_list;
excl_list_len;

gid_entry *subject_list;
subj_list_len;

*data;

data_len;

messg_entry *next;

128

/O‘.“.‘.t‘.t.‘#‘tt.ltt#“‘..““‘.t“t““.‘t‘t..“t“.#“““‘tt‘t.‘

* MSUTIL.C ver 1.0
* Utility procedures used by Membership Service programs.

*
*int
*int

* void
*int

* void
*

* int

* int

* void
* int

* int

* int

* int

* int
* void
* void
* void
* void
* void
* void
* void
*

init_socket(sin, port)

join_mcast_group()

leave_mcast_group()

addrcmp(addrl, addr2)

form_messg(messg, group, authentication, groupview, sender, type, subject,
excl_list, excl_list_len, subj_list, subj_list_len, data, data_len)

send_messg(socket, message, dest)

recv_messg(ms_socket, mc_socket, message, sender, timeout)

set_timeout()

timed_out()

search_gid_list(gid_list, gid)

add_gid_entry(&gid_list, gid)

copy_gid_list(gid_list, &buffer)

extract_gid_list(buffer, &gid_list, list_len)

delete_gid_list(&gid_list)

print_in_addr(in_addr)

print_sock_addr(sin)

print_sock_info(s, sin)

print_hostent(hp)

print_messg(messg)

print_gid_list(gid_list)

* Written by Dave Neely, March 1994.
* Modified: 4/26/94

##*tt#*#####t###*###*#**#*##**#*****#*##**t##**t*t*t#*t##“t*##**#***/

#include "msutil.h"
#include "mcaster.h"

129

-

int init_socket();

int join_mcast_group();
void leave_mcast_group():
int addrcmp();

void form_messg();

int send_messg();

int recv_messg();

void set_timeout();

int timed_out(),

int search_gid_list();
int add_gid_entry();
int copy_gid_list();

int extract_gid_list();
void delete_gid list();
void print_in_addr();
void print_sock_addr();
void print_sock_info();
void print_hostent();
void print_messg();

void print_gid_list();

/* global vanables */

struct sockaddr_in sin, mcsin;
struct sockaddr_in group_addr;
int ms, mc;

#ifdef MULTICAST

struct ip_mreq imr;

#endif

int debug = 0;

/* socket addresses */

/* group mcast address */
/* IP socket fd's */

/* IGMP control */

/* 1 = enable diagnostic prints */

/**‘**#*#**#*‘##‘##“#‘0###***#****#‘t#*##t**##t*'*#t***ttfi#tttt#t*t#

* Initialize socket address structure

#*#‘tt#.tt*‘t#‘t##**‘*t#t#####t**t#*#**###*#####tt*#*#t*‘##t####‘/

int init_socket(sin, port)

130

struct sockaddr_in sin; /* socket address */
u_short port;
{

int s; /* socket fd */

int one =1,

bzero((char*)&sin, sizeof{sin)),/* clear address structure and initialize */
sin.sin_family = AF_INET;

sin.sin_port = htons(port),

sin.sin_addr.s_addr = htonl(INADDR_ANY);

/* open and bind UDP/IP socket */

if ((s = socket(AF_INET, SOCK_DGRAM, 0)) <0) {
perror(“can't open socket");
exit(-1),

!

if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &one, sizeof{one)) < 0) {
perror("can't make socket reuseable"),
exit(-1);

}

if (bind(s, (struct sockaddr *) &sin, sizeof{sin)) < 0) |{

perror("can't bind socket");

close(s);
exit(-1);
}
return s,

/**#t*#****###****#*##****##**###*t#t#ttt*t##**#t#t#t#t*#*****t##t*tt*

* Join IP multicast group or mcaster group (if unicast only).
t##*#***t***t#*#*******tt##******t#*#t**#*#*##ttt**#t#**t#t*#t**#**##/

int join_mcast_group(group_name, group_str_addr)

131

char *group_name; /* group string name */

char *group_str_addr, /* IP dot address */

{
u_char loop = 0, /* turn loopback option off */
int len, sent;
struct sockaddr_in from; /* to receive sender's address */
struct timeval timeout; /* time to wait for response */
timeout.tv_sec = 30*SEC, /* wait max of 30 seconds */

timeout.tv_usec = 0;

/* set up group address structure */
group_addr.sin_family = AF_INET;

group_addr.sin_port = htons(MS_PORT),
group_addr.sin_addr.s_addr = inet_addr(group_str_addr);
printf{"Group Address:\n");
print_sock_addr(group_addr);

#ifdef MULTICAST /* join IGMP multicast group */
imr.imr_multiaddr.s_addr = inet_addr(group_str_addr),
printf{"group address: %s\n", inet_ntoa(imr.imr_multiaddr.s_addr));
imr.imr_interface.s_addr = htonl(INADDR_ANY),
if (setsockopt(ms, IPPROTO_IP, IP_ADD MEMBERSHIP,

&imr, sizeof{imr)) < 0) {
perror("can't join group");
return NEG_JOIN,;
}
if (setsockopt(ms, [IPPROTO_IP, IP_ MULTICAST LOOP,
&loop, sizeof{loop)) < 0) {
perror(“can't disable multicast loopback"),
}
printf{("group %s joined\n", inet_ntoa(imr.imr_multiaddr.s_addr));
return JOIN_ACK;

132

#else /* join MCASTER multicast emulator group */
/* generate and send join request message to MCASTER */
form_messg(&messg, group_name,0,0,0, JOIN_GROUP,0,0,0,0,0,0,0);
len = sizeofimessg);
printf("SENDING JOIN MESSAGE:\n"),
printf{"message to send: \n"),
print_messg(messg),
sent = send_messg(ms, messg, group_addr),
printf{"%d bytes sent\n", sent),

/* wait for ACK message from MCASTER */

if ((sent = recv_messg(ms, mc, &messg, &from, timeout)) < 0)
printf{"error in message rec'd\n");

else {
printf{"MESSAGE RECEIVED:\n"),
printf{"%d bytes received\n", sent),
print_messg(messg);
printf{"sender:\n");
print_sock_addr(from);

}

#endif
return messg.msg_type;

/#*#*l‘**#t**##‘**#tt**###t*t##****#*******#*#tt##t#***#t*t#t##t**#***

* Leave IP multicast or mcaster group.
#*#tttt#*t#*tt#t*#ttt*t*#**#tttt**t**tt*#***#*t***#****t*##t*#***/

void leave_mcast_group(group_name)

char * group_name;

{

int len, sent;
short message_type;
133

struct sockaddr_in from; /* to receive sender's address */
struct timeval timeout,

set_timeout(&timeout, 30*SEC), /* wait 30 seconds */

/* leave group */
#ifdef MULTICAST
if (setsockopt(s, IPPROTO_IP, IP_DROP_MEMBERSHIP,
&imr, sizeof{struct ip_mreq)) < 0) {
perror("can't leave group");
exit (-1);
}
else
printf{("group %s left\n", group_name);
#else
/* generate and send leave request message to MCASTER */
form_messg(&messg, group_name,0,0,0, LEAVE_GROUP,0,0,0,0,0,0,0.,0),
len = sizeof{messg);
printf{"SENDING LEAVE MESSAGE:\n"),
printf{"message to send: \n"),
print_messg(messg);
sent = send_messg(ms, messg, group_addr);
printf{"%d bytes sent\n", sent);

/* wait for ACK message from MCASTER */
if ((sent = recv_messg(ms, mc, &messg,&from, timeout)) < 0)
printfR"error in message rec'd\n");
else {
printf{"MESSAGE RECEIVED:\n"),
printf{"%d bytes received\n", sent);
print_messg(messg);
printf{("sender:\n"),
print_sock_addr(from);
message_type = ntohs(messg.msg_type);

134

‘M

printf{"message_type = %d\n", message_type);

if ((strcmp(messg.group_name, group_name)) (|
((message_type == LEAVE_ACK)))
printf{"unable to leave group: error %d\n", message_type).

}
#endif

}

/tt*#**#*#*ttt#t#t**#t‘#*tt***##t#tttttt**#*##t###t*ttttt##*ttt‘#tt#tt

* Compare two sockaddr_ia structs.. return | if same, O otherwise.
t**#*****#**‘*#*#*t#*ttt*‘t*#*‘#‘*#t##‘####ttt*t###tt‘**t##t#t#tt#l‘t/

int addrcmp (addrl, addr2)

struct sockaddr_in adarl;
struct sockaddr_in addr2;
{ _
return ((addr1.sin_family = addr2.sin_family) &&
(addrl sin_port == addr2.sin_port) &&
(addrl.sin_addr.s_addr == addr2 sin_addr.s_addr)),
} /* addrcmp */

/**#*****#***##*t**t********#***##****##********#***#t**##*tt********#

* Compose message. Copy all integer values, point list and data

* pointers to appropriate list or data string.
*#t#******‘##***#****#*##*t*##*******#t#**##***t#***##***##**#**t#**#/

void form_messg(messg, group, auth, GV, sender, type, subject, excl_list,
excl_list_len, subj_list, subj_list_len, data, data_len)

struct message *messg;

char *group; /* group string name */
long auth; /* authentication nur:ber */
u_short GV, /* group view number */

135

u_short sender; /* sender gid */
u_short type; /* message type */
u_short subject; /* subject gid */
struct gid_entry *excl_list; /* gid exclude list */

u_short excl_list_len;

struct gid_entry *subj_list; /* gid subject list */

u_short subj_list_len;

char *data;

u_short data_len;

{

/* bzero((char *)messg, sizeof{*messg)), */
messg->vers = VERS;
messg->checksum = htons(Oxfiff);
strcpy(messg->group_name, group);
messg->authentication = htons(auth),
messg->group_view = htons(GV),
messg->sender_gid = htons(sender),
messg->msg_type = htons(type);
messg->subject_gid = htons(subject);
messg->exclude_list = excl_list;
messg->excl_list_len = htons(excl_list_len);
messg->subject_list = subj_list;
messg->subj_list_len = htons(subj_list_len);
messg->data = data;
messg->data_len = htons(data_len);

/********t#*****#t***#**###***#**#*#***#*#**##******##***##*ttt#t###**

* Send a variable length message "messg”. The message may contain 2
* lists of gids, and data field. These are appended to the buffer,
* 'messgbuf’, used to store the overall message. Returns the number

* of bytes sent.

‘****t*t***tt**t#‘t*###**#***#**********‘#**#*#***#**###tt*t**#‘#t't*/

136

e Tty SRR i RS
e T W
e

int send_messg(s, messg, to)

int s, /* socket fd */
struct message messg;
struct sockaddr_in to;
¢
int sent;
int msglen = sizeof{messg) + (ntohs(messg.excl_list_len) +
ntohs(messg.subj_list_len))*2 + ntohs(messg.data_len),

char *messgbuf, *mp; /* message buffer and pointer */
char *datastr; /* for diagnostic prints */

int i

u_short val, *up; /* for diagnostic prints */

if (debug) printf{"messglen to send: %d\n", msglen);
if (!(messgbuf = (char*) malloc (msglen))) {
perror("unable to create message buffer");

return -1;
}
/* copy messg into outgoing buffer */
bzero(messgbuf, msglen); /* clear buffer */
beopy((char *)&messg, messgbuf, msglen); /* copy messg into buffer */
mp = messgbuf + sizeof{messg); /* skip over messg */

/* append excl & subj lists and data */
copy_gid_list(messg.exclude_list, &mp);

if (debug) { /* print excl_list string */
printf{"excl_list to send: "),
for (i=0; i<ntohs(messg.excl_list_len); i++) {
up = (u_short *)(mp + i*2),
printf(" %d ", *up),
}
printf{"\n"Y;

137

-

mp += (ntohs(messg.excl_list_len)*2); /* skip 2* number of gids */
copy_gid_list(messg.subject_list, &mp);

if (debug) { /* print subj_list string */
printf{("subj_list to send: ");
for (i=0; i<ntohs(messg.subj_list_len); i++) {
up = (u_short *)}(mp + i*2);
printf{" %d ", *up),

}

printﬂ“\n");
}
mp += (ntohs(messg.subj_list_len)*2); /* skip 2* number of gids */
bcopy(messg.data, mp, ntohs(messg.data_len));

if (debug) { /* create temporary data string to print messg.data */
if ({(datastr = (char*) malloc (ntohs(messg.data_len)+1)))
perror("unable to create data string");
beopy(mp, datastr, ntohs(messg.data_len));

datastr[ntohs(messg.data_len)] = NULL; /* make string */
printf{"data to send: %s\n", datastr),
free(datastr),

}

if ((sent = sendto(s, messgbuf, msglen, 0, (struct sockaddr *)&to,
sizeof{struct sockaddr))) != msglen)
perror("error in message length sent");
free(messgbuf);
return sent;
} /* send_messg */

/**#***t***#**#*****#*#****#*******#**#*****t****#*#**####**#*t*##tt#*

* Receive a variable length message from either the ms or mc sockets.
* Use select() to receive from ready socket into messgbuf. If received
* from ms, then messgbuf contains only "messg" and can be transferred.

138

* If received from mc, then messgbuf has the sender's address at the

* front which is extracted into "from", then extract "messg".

* Note: recv_messg allocates memory for the received gid_lists and

* data. Messg is returned with pointers pointing to these new lists

* and data. The lists and data must be deallocated when no longer

* needed, and before a new message is formed. Otherwise, the links to
* the memory will be lost, and the memory cannot be recocered.

‘#*‘**#t#*#**#t#***t**#‘***‘*‘#****t##t###***t#*#**##tttttttt*####*#*/

int recv_messg(ms, mc, messg, from, timeout)

int ms, mc, /* socket fd's */

struct message *messg; /* to hold incoming message */
struct sockaddr_in *from; /* extract sender's address */
struct timeval timeout; /* for variable timeout */

{

char messgbuff MAXMSGLEN], *mp; /* message buffer and pointer */
int len = sizeof{*from),

int ready, sent =0;

fd_set fdread; /* fd mask for select() */

char *datastr, *data; /* to receive messg.data */

/* initialize for reception from multiple sockets */
FD_ZERO(&fdread);
FD_SET(ms, &fdread),
FD_SET(mc, &fdread);
/* wait until either socket is ready to be read */
if ((ready = select(32, &fdread, 0, 0, &timeout)) < 0) {
perror("select error”);
return -1,
}
if (ready) {
bzero((char *)messg, sizeof{*messg));
if (FD_ISSET(ms, &fdread)) { /* received from ms socket */
printf{"received at MS socket\n"),

139

if ((sent = recvfrom(ms, messgbuf, MAXMSGLEN, 0, from, &len)) < 0) {
perror("error in message rec'd"),
return -1,
}
else /* extract message from messgbuf */
mp = messgbuf; /* set ptr to beginning of message */
}
if (FD_ISSET(mc, &fdread)) { /* received from mc socket */
printf{"received at MC socket\n"),
if ((sent = recvfrom(mc, messgbuf, MAXMSGLEN, 0, from, &len)) < 0) {
perror("error in message rec'd"),
return -1;
}
else { /* extract sender address & message from messgbuf */
bzero((char *)from, len);
beopy(messgbuf, (char *)from, len),
mp = messgbuf + len; /* set ptr to beginning of message */

}
/* extract messg, exclude & subject lists, and any data from messgbuf */
bcopy(mp, (char *)messg, sizeof{*messg));
mp += sizeof{*messg); /* skip to lists */
if ((len = extract_gid_list(mp, &(messg->exclude _list),
ntohs(messg->excl_list_len))) != ntohs(messg->excl_list_len)) {
printf{"error in extracting exclude list: len = %d\n", len);
return -1;
}
if (debug) printf("len = %d gids extracted\n", len);
mp += (ntohs(messg->excl_list_len))*2; /* skip to end of list */
if (debug) printf{"mp-messgbuf = %d\n", mp-messgbuf);
if ((len = extract_gid_list(mp, &(messg->subject_list),
ntohs(messg->subj_list_len))) != ntohs(messg->subj_list_len)) {
printf{"error in extracting subject list: len = %d\n", len);
return -1,

140

!
if (debug) printf{"len = %d gids extracted\n", len);
mp += (ntohs(messg->subj_list_len))*2; /* skip to end of list */
if (debug) printf{"mp-messgbuf = %d\n", mp-messgbuf);
if{!(data = (char *) malloc (ntohs(messg->data_len)))) {
perror("unable to allocate memory for data");
return -1,

}

/* copy received data into messg.data */

bcopy(mp, data, ntohs(messg->data_len));

messg->data = data;

if (debug) printf{"after data: mp-messgbuf = %d\n", mp-messgbuf),

if (debug) { /* create temporary data string to print messg.data */
printf{"messg->data_len = %d\n", ntohs(messg->data_len));
if (!(datastr = (char*) malloc (ntohs(messg->data_len)+1)))
perror(“"unable to create data string"),
bcopy(mp, datastr, ntohs(messg->data_len));

datastr[ntohs(messg->data_len)] = NULL,; /* make string */
printf("data rec'd: %s\n", datastr);
free(datastr),
}
' /* ready */
urn sent;

} /* recv_messg */

/#*#****##**#****t*###t***#**t‘**t***#******t***#tt*t*#*##****########

* Set timer to current time + timeout time t_usec. Converts t_usec to
* seconds and useconds, and adds to timer.tv_sec & timer.tv_usec,

* respectively. If useconds exceed 1,000,000, a carry to seconds is

* performed.

#***#*#**#****#t#***#t##*t##t*#*#*t####‘***t*#t#*t**##t#*#***tt*t***#/

141

void set_timeout(timer, t_usec)

struct timeval *timer; /* timer to set */

long t_usec;,

{

struct servent tzp; /* for timing */

if (t_usec == MAXTIME) { /* set sec & usec to MAXTIME */

timer->tv_sec = MAXTIME,
timer->tv_usec = MAXTIME,;
}
else { /* set timer to current time + t_usec */
if (gettimeofday(timer, &tzp) != NULL) {
perror(“unable to gettimeofday"),
exit(-1);
}
/* add t_usec to timer */ :
timer->tv_sec +=t_usec/ SEC; /* add seconds */
timer->tv_usec +=t_usec % SEC; /* add useconds */
if (timer->tv_usec >= SEC) { /* carry | sec. */
timer->tv_usec -= SEC;
timer->tv_sec += 1,

H

} /* set_timeout */

/#*tlt#t#*t*t#*t##.'#*###‘**#t#‘*t*****#**t#t#t##t#t#t***tt‘tttt‘tt***

* Check if timer has timed out. Returns 1 if current time > timer,

* 0 otherwise.
*##**#t‘*#######t###t*t#t#t***##*ttttt#t*t#tt#***#*#*tt####tt##t#t#t#/

int timed_out(timer)

struct timeval timer, /* timeout timeval */

142

/* timeout period in usec. */

struct timeval tp; /* for time stamps */
struct servent tzp; /* for timing */

if{gettimeofday(&tp, &tzp) != NULL) {
perror("unable to gettimeofday"),
exit(-1),
}
return ((tp.tv_sec > timer.tv_sec) ||
((tp.tv_sec == timer.tv_sec) && (tp.tv_usec > timer.tv_usec)));
} /* timed_out */

/‘#*##t#t**#*t#t#‘#t##t‘#*tt*t###t#tt‘#**##t##**t“#tttttt*#t““#t‘l*

* Search a list of gid_entries pointed at by gid_list for "gid". Return

* 1 if the gid is found, 0 otherwise.
#*tttt*tt##tt###tt*tttt**t*t*t##tt#*t#t***t##**tt‘t#***tt*‘##*#*#t##t/

int search_gid_list(gid_list, gid)

struct gid_entry *gid_list;
u_short gid;
{
struct gid_entry *gp = gid_list;
int found =0,

while (gp && !'found) {
found = (gid = gp->gid);
gp = gp->next,;

}

return found;
} /* search_gid_list */

/*tt*t#‘t#t#*‘t"#*######tt‘*t##t*t#t*t*#*tt*t*#*##t##*#t****#t#*t*tt#

143

* Add a new node to the head of the list of g1 . ntries pointed at by
* gid_list. Return | if successful, 0 if unable to add to list.

‘*#t‘tt#tt###ttt*tt‘###t*‘*#*#‘Qt#t#tttt*tt*#*###*#tt*#tt##*t‘tt#ttt‘/

int add_gid_entry(gid_list, gid)

struct gid_entry **gid_list; /* pointer to gid_list pointer */
u_short gid;
{

struct gid_entry *gp;

if (search_gid_list(*gid_list, gid)) /* duplicate gid found in list */
return O,

/* allocate new gid_entry */

if ({(gp = (struct gid_entry *) malloc (sizeof{struct gid_entry)))) {
perror("unable to create new gid_entry");
return 0;

)

/* add new entry to head of gid_list */

gp->gid = gid,

if{!(*gid_list)) /* if empty gid_list */
gp->next = NULL,

else /* nonempty list.. insert at head */
gp->next = *gid_list;

*gid_list = gp;

return 1,

} /* add_gid_entry */

/**t*#*t**i**###*#*#***#**#*t**t‘#***##*#*#***#*#*#**tt*t###t*t#**tt*t
* Copy the gids from a list of gid_entries pointed at by gid_list into

* a buffer of characters. Since each gid is u_short, it will take 2

* bytes. Uses pointer math to increment through buffer to place gids.

* Returns the number of gids copied or 0 for an error.
##****t**t#**#**##*#*t###*t#*#*********ﬁt##t*****‘##t#*****#**t**#*##/

144

int copy_gid_list(gid_list, buffer)

struct gid_entry *gid_list;
char **buffer; /* pointer to buffer */
{

struct gid_entry *gp = gid_list;

char *cp = *buffer;

if (debug) printf{"copy_gid_list: cp-(*buffer) = %d\n", cp-(*buffer)),
while (gp) { /* copy gids one at a time */
if (debug) printf("gp->gid = %d\n", gp->gid),
beopy((char *)&(gp->gid), cp, 2);
cpt+=2; /* u_short = 2 bytes */
£p = gp->next,
}
if (debug) printf{"(cp-(*buffer))/2 = %d\n", (cp-(*buffer))/2),
return (cp - (*buffer)) / 2; /* number of gids copied */
} /* copy_gid_list */

/****#***t‘t*#**t******t#***##tt***#*##*‘##t***##*#**#*t##t#*t##*##*#*

* Extract gids from a buffer of characters into a list of gid_entries
* pointed to by gid_list. Each gid is 2 bytes in the buffer. Uses

* pointer math to increment through buffer to place gids.

* Returns the number of gids extracted or 0 for an error.

#*t##*t##*t***##‘###‘###*‘**#‘#**‘#t*#*##t*#*ttt*‘t*#t#*###**tt#*tt##/

int extract_gid_list(buffer, gid_list, list_len)

char *buffer,
struct gid_entry **gid_list; /* pointer to gid_list pointer */
u_short list_len;
{
u_shorti=0;, /* count of gids */
u_short gid;

145

*gid_list = NULL,
while (i < list_len) { /* extract gids one at a time */
beopy((buffer + (1*2)), (char *)&gid, 2),
if ('(add_gid_entry(gid_list, gid)))
return 0, /* unsuccessful add */
i+,
/
return i; /* number of gids extracted */
} /* extract_gid_list */

/##t#t**#####‘###t*##*##*******'t*‘####**#t#t*#t##*t###‘t*##t‘#t*#*t#t

* Remove all gids from a list of gid_entries pointed at by gid_list and

* free all memory. Uses two pointers, ngp and cgp to walk through list
* and free each entry.
#t#t###t#**##*##*#**#t*#t*##**‘*t***t*tt#*t**t*#tt#t#*t#t#t**#t#t‘#/

void delete_gid list(gid_list)

struct gid_entry **gid_list;
{
struct gid_entry *ngp, *cgp = *gid_list;

while (cgp) /* current gid ptr != NULL */
ngp = cgp->next; /* get next entry */
free(cgp); /* free current entry */
cgp = ngp;

}

*gid_list = NULL;

} /* delete_gid_list */

JERERRRRRRRERRRRRERRER R ERRERRR RN AR KR RAR AR AR R R R RN R AR RR AR

* Print message fields.

146

XEBREBEEER RIS XSS S BB SEEB SRR RS R UERR LSRR USRS EBE SRS S B AR E SRS LS RBR S/

void print_messg(messg)

struct message messg;

{

char *datastr; /* to convert data to a string */

printf{"version: %d\n", ntohs(messg.vers));
printf{"checksum: %d\n", ntohl(messg.checksum));
printf("group_name: %s\n", messg.group_name);
printf{"authentication: %d\n", ntohl(messg.authentication));
printf("group_view: %d\n", ntohs(messg.group_view));
printf{"sender_gid: %d\n", ntohs(messg.sender_gid));
printf("subject_gid: %d\n", ntohs(messg.subject_gid));
printf{"subject_addr: %d\n", ntohl(messg.subject_addr));
printf{"subject_rank: %d\n", ntohs(messg.subject_rank)),
printf("msg_type: “),
switch (ntohs(messg.msg_type)) {

/* monitoring message types */

case QUERY: printf" QUERYWn"),
case REPLY: printi" REPLY\n"),

/* mserver INITIATE message types */

case M_JOIN: printf(" M_JOIN\n");
case M_LEAVE: printf(* M_LEAVEW"),
case M_SPLIT: primti" M_SPLIT\n");
case M_MERGE: printf(" M_MERGEW"),

caseM_ADD PARENT: printfi® M_ADD_PARENT\n"),
case M_DEL_PARENT: printfi" M_DEL_PARENTn"),

case M_STATS_S: printf(" M_STATS_S\n");
case M_STATS_L: primf{i" M_STATS_L\n")
case M_FAIL: printf(" M_FAIL\n"),

case M MULTI FAIL: print" M_MULTI_FAIL\n");
case M_COORD FAIL: printi" M_COORD_FAIL\n");

147

break;
break;

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;

/* change sequence message types */

ACK\n");
COMMIT\n"),
WAIT\n"),
MSG_QUERY\n");
INIT\n");

M_JOIN_REQ\n");
M_LEAVE_REQ\n").
M_SPLIT_REQ\n");

case ACK: printf("
case COMMIT: printf("
case WAIT: prntf("
case MSG_QUERY: printf("
case INIT: printf{"
/* external physical requests to core-set */
case M_JOIN_REQ: prntf("
case M_LEAVE_REQ: printf("
case M_SPLIT_REQ: printf("
case M_MERGE_REQ: printf("

case M_ADD PAR_REQ: printf{"
case M_DEL_PAR_REQ: printf("
case M_STATS_S_REQ: printf("
case M_STATS_L_REQ: printf{(*

M_MERGE_REQ\n"),

M_ADD_PAR_REQ\n");

M_DEL_PAR_REQ\n");
M_STATS_S_REQwn");
M_STATS_L_REQ\n");

/* application group INITIATE message types */

case A_JOIN: printf"
case A_LEAVE: printf("
case A_SPLITQ: printf("
case A_MERGE: printf("
case A_STATS_S: printfi("
case A_STATS L.: printf("
case SUBMIT: printf("
case DIRECT: printf("

A_JOIN\n");
A_LEAVE\n"),
A_SPLIT\n");
A_MERGE\n");
A_STATS_S\n");
A_STATS_L\n"):
SUBMIT\n");
DIRECT\n");

/* application group request message types */

case A_JOIN_REQ: printf("
case A LEAVE_REQ: primtf{"
case A_SPLIT_REQ: printf{("
case A_ MERGE_REQ: printf("
case A_ STATS_S_REQ: printf{"

case A_STATS_L_REQ: printf{"
/* mcaster message types */

case JOIN_GROUP: printf("
case LEAVE_GROUP: printf("

A_JOIN_REQ\n");
A_LEAVE_REQ\n");
A_SPLIT_REQ\n");
A_MERGE_REQ\n");
A_STATS_S_REQ\n");
A_STATS_L_REQwn");

JOIN_GROUP\n");
LEAVE_GROUP\n");,

break;
break; .
break;
break;
break;

break;
break;
break;
break;
break;
break,

break;

break;
break,
break;
break;
break,
break,
break;
break;

break;
break;
break;
break;
break;
break;

break;
break;

case JOIN_ACK: printf(* JOIN_ACK\n"); break:

case DUP_MEMBER: printfi* DUP_MEMBER\n"), break;
case NEG_JOIN: printf(" NEG_JOINwn"), break;
case LEAVE_ACK: printf(" LEAVE_ACK\n"), break;
case NO_GROUP: printfi® NO_GROUP\n"), break;
case NO_MEMBER: printf("* NO_MEMBER\n"), break;
case NEG_LEAVE: printf(" NEG_LEAVEW"), break;
default: printf(" %d\n", ntohs(messg.msg_type));

}

printf{"exclude_list: ");
print_gid_list(messg.exclude_list);

printf{"excl_list_len: %d\n", ntohs(messg.excl_list_len));
printf{"subject_list: ");
print_gid_list(messg.subject_list);

printf{"subj_list_len: %d\n", ntohs(messg.subj_list_len));
printf{"data_len: Y%d\n", ntohs(messg.data_len));

/* create temporary data string to print messg.data */

if (!(datastr = (char*) malloc (ntohs(messg.data_len)+1)))
perror(“unable to create data string");

bcopy(messg.data, datastr, ntohs(messg.data_len));

datastr{ntohs(messg.data_len)] = NULL; /* make string */

printf("data: %s\n", datastr),

free(datastr);

} /* print_messg */

/*##*#**#**t**#*#*****t*t***********#*#*********t***********##*#*#t***

* Print in_addr IP addresss.

t###t**t#**#**********t*****#*#*#**#****#t###******#******#*t**/

void print_in_addr(addr)

struct in_addr *addr;

149

char *ip_addr = (char*)inet_ntoa(* addr);
printf{“IP address = %s\n", ip_addr);
} /* print_in_addr */

/***************##*****#t**#*‘********t***##*#**##*t****###**t*#*t***#

* Print sockaddr_in address structure info.
*******************t*******#*#*t********t**‘****#*****#******#*#‘##t#/

void print_sock_addr(sin)

struct sockaddr_in sin;/* socket address structure */

{
printf{"family: %d \n", ntohs(sin.sin_family));
printf{"port: %d \n", ntohs(sin sin_port));
print_in_addr(&sin.sin_addr.s_addr),

} /* print_sock_addr */

/****************************#*#********************#*************t#t*

* Print socket info.
***********t***********t******#*********#*******##*****#**#**#**tw***/

void print_sock_info(s, sin)

int s; /* socket fd */
struct sockaddr _in sin;/* socket address structure */
{
int len = sizeof{sin),
if (getsockname(s, (struct sockaddr *) &sin, &len) < 0) {
perror("can't get socket info"),
exit(1);
}
printf{"Socket Info: \n"),
printf{"socket: %d \n", s),

150

print_sock_addr(sin);
} /* print_sock_info */

/#**t#*tt***#***‘#lt#**#**#***t****tt***#**t**t##*#*#***#***t***t#***#

* Print hostent structure info.
******###‘*##*‘***#*#*****t*‘***#*‘#***#***t***##***********#**‘*#t#*/

void print_hostent(hp)

struct hostent *hp;

{
char *af = hp->h_addrtype == 2 ? "AF_INET": "non-AF_INET";

printf{"Hostent Info: \n"),

printf{"h_name: %s\n", hp->h_name);

printf("h_aliases[0]: %s\n", hp->h_aliases[0]);

printf{"h_addrtype: %s\n", af);

printf{("h_length: %d\n", ntohs(hp->h_length));

printf("h_addr: %s\n", inet_ntoa(*(struct in_addr*)(hp->h_addr))).

printf{"h_addr_list{0]: %s\n", inet_ntoa(*(struct in_addr*) (hp->h_addr_list[0])));
} /* print_hostent */

/*************t*t*********t#********t***#******#**#*#************##***

* Print all gids from a list of gid_entries pointed at by gid_list.

********t*******t#***#*#*****t*#*#*#*****#t*****t*******t#****tt#*#**/

void print_gid_list(gid_list)

struct gid_entry *gid_list;
{
struct gid_entry *gp = gid_list;

if ('gp) printf{" empty list");
else {
while (gp '= NULL) {

151

printf(" %d “, gp->gid);
gp = gp->next, /* get next entry */

}

printf("\n");
} /* print_gid_list */

152

/#tt*‘t‘*‘t‘#t“‘l“‘.“t.‘##‘#itt‘t.*t‘t*t‘#tt“*t“#tt‘.t“#“'t‘.t‘

* MCASTER.C ver 1.0 Multicast Emulator
* Program to emulate IP multicast in a unicast environment.

* Uses single socket for send & receive, with the IP address & port

* the sa:ne as would be used for an IP multicast (port = MS_PORT).
* Incoming messages are of "message" format, outgoing unicast messages
* are also of "message” format (for join & leave ACKs to members).
* Outgoing multicast messages have the original sender's sockaddr_in
* prepended to the message, since mcaster overwrites the original

* sender's address with its own and the recipients have no other way
* of knowing who was the original sender.

* Note: this version has no error checking or diagnostic print state-

* ments... any erroneous message is simply discarded or delivered as
* is. For diagnostics, use MCASTERYV.C, the same program with

* diagnostic print statements.

*

* Written by Dave Neely, March 1994.

* Modified 4/26/94

*##******#***************#**##*#**tt*************#*******#***#**#*t#*/

#include "msutil.c"

struct member { /* element in list of members */
struct sockaddr_in addr;
u_char loop;
struct member *next;

¥

struct group { /* element in list of groups */
char name[MAXGROUPNAME];
struct group *next;
struct member *members;
struct member *last;

153

struct sockaddr_in sin; /* socket address */

struct sockaddr_in group_addr,; /* group mcast address */
struct sockaddr_in from; /* received from address */
struct sockaddr_in member; /* member address */
struct hostent *hp;, /* host entity struct */

struct group *group _list, *last_group. /* global group list ptrs */

/* functions */

struct group *search_group_list();
struct member *search_member_list();
struct group *add_group();

int add_member();

int join_group();

int remove_group():

int remove_member();

int leave_group();

int mcast();

void print_group_list();

void print_member_list();

main()
{
int s, /* 1P socket fd */
u_short port;
int len;
int sent,

char hostname[MAXGROUPNAME];

char hostaddr{17];

char msgbuff MAXMSGLEN]; /* to recv message */
char *msgstr; /* to copy message */
short message_type, msglen;

short cc;

154

/* initialize socket */

port = htons(MS_PORT);

s = init_socket(sin, port), /* mcaster socket */
print_sock_info (s, sin);

/* get info about local host */
gethostname(hostname, MAXGROUPNAME),
if ((hp = gethostbyname(hostname)) == 0) {
perror("unable to get hostname");
exit(-1);
}
print_hostent(hp);
strcpy(hostaddr, inet_ntoa(*(struct in_addr*)(hp->h_addr)));

/* initialize group address structure */
bzero((char*)&group_addr, sizeof{group_addr));
group_addr sin_family = hp->h_addrtype;
group_addr.sin_port = htons(port);
group_addr.sin_addr.s_addr = inet_addr(hostaddr),
printf("Group Address:\n");
print_sock_addr(group_addr);,

for (;;) { /*wait for incoming multicast messages */
len = sizeof{from),
sent = recvfrom(s, msgbuf, MAXMSGLEN, 0, &from, &len),
/* extract messg from buffer */
bzero((char *)&messg, sizecf{messg));
bcopy(msgbuf, (char *)&messg, sizeof{messg)),

/* check type of received message */

message_type = ntohs(messg.msg_type);

if ((message_type==JOIN_GROUP)||(message_type==LEAVE_GROUP)) {
member = from;
/* all members receive mcasts on the MC_PORT */

155

member.sin_port = MC_PORT,
if (message_type == JOIN_GROUP)
cc = join_group(messg.group_name, member, NO_LOOP),
else
cc = leave_group(messg.group_name, member),
/* generate and send ACK for join or leave */
form_messg(&messg, messg.group_name, 0, messg.group_view,
0, cc, messg.sender_gid, 0, 0, 0, 0, 0, 0);
len = sizeof{messg);
sendto(s, {char *)&messg, len, 0,
(struct sockaddr *)&from, sizeof{struct sockaddr));
H
else /* multicast unchanged message to group */
mcast(s, msgbuf, from),
}

} /* main */

/*##***t*t##*t‘***t**###*#t##*t*#t####.‘#*##t*#**ttt*ttttt*t*t*‘#t“‘t

* Search group list for a group by its string name. Return a pointer
* to the group before the desired group, for ease of removing the
* group, or NULL if not found.

#*#*‘#“#**#****t#‘**#t*#ﬁ*#**t#**##tt##**t**t#t**t##*###t*##**t#/

struct group *search_group list (groupname)

char *groupname;

{
struct group *gp = group_list;
int notfound;

if (group_list) { /* non-empty group list */
if (!(notfound = strcmp(gp->name, groupname))) /* found Ist one */
gp = last_group; /* set gp to element before 1st element */

else /* not the 1st element - search for a match */

156

while ((notfound = strcmp(gp->next->name, groupname)) &&
(gp->next != last_group))

8P = gp->next,
if{'notfound) { /* found! */
return gp;

}
} /*else group not found or empty group list */
return NULL;

} /*search_group_list */

/*#t#*‘#t#**#*‘*#t#**‘##*##*#‘t*tt‘##‘**#t###*ttt##**##‘*#t##t####t“#

* Search member list of a group pointed to by gp for member "mbr".
* Return a pointer to the member before the desired group, for
* ease of removing the group, or NULL if not found.

t*#***#**i**##**##**t*##*###‘**t#****#*#**t****#*#*##ttt*#t*#t**‘#*#t/

struct member *search_member _list (gp, mbr)

struct group *gp; /* points to the desired group */
struct sockaddr_in mbr; /* member address to locate */
{

struct member *mp = gp->members;
int found,

if (gp->members) { /* non-empty member list */
if (found = addrcmp(mp->addr, mbr)) /* found 1st one */
mp = gp->last; /* set mp to element before 1st element */

else /* not the 1st element - search for a match */ i
while ((!(found = addrcmp(mp->next->addr, mbr)) &&
(mp->next |= gp->last)))
mp = mp->next;
if{found)
return mp,
} /*else member not found or empty list */

157

return NULL;
} /% search_member_list */

/*##ttt#‘#tt##t*ttt*‘tttt“t#t#“#**tt#t#‘#‘.#ttt“‘t#‘ttt##‘#ttttttt‘

* Add new group "groupname" to list of groups. Return pointer to
* new group.
**t#t*##*#tt##‘tt#*##*‘#t#tttt##‘*#‘tttttt#t‘ttttttttttttt#ttttt*t‘t#/

struct group *add_group (groupname)

char *groupname;

{
struct group *gp;

/* create new group element */
if (!(gp = (struct group *) malloc (sizeof{struct group))))
return NULL;

/* connect new group into list */

if (\group_list) /* if group_list is empty */
group_list = gp:

else /* non-empty group_list */
last_group->next = gp;

last_group = gp;

/* initialize new group element */

strcpy(gp->name, groupname),

gp->next = group_list; /* point new last element to 1st element */
gp->members = NULL,;

gp->last = NULL,;

return gp;
} /* add_group */

158

/“###‘*##.t“.‘t‘lttttt#ttt‘tt‘#"t‘#tt‘tt“#tt‘##*“‘t#“t‘t‘tt#tt‘t

* Add new member to member list of group pointed to by gp. Return
* 0 if successful or negative value indicating reason for failure.

* mbr is a sockaddr_in structure with the new member’s address.

* loop is used to control loopback of message to sender,

* 0 = no loopback, | = loopback.

t****#**#t##**t*ti***‘#‘#t#t#‘##*t#*#*t###ttt#tt**‘t*##tt*tt**t##'#‘#/

int add_member (gp, mbr, loop)

struct group *gp;
struct sockaddr_in mbr;
u_char loop;

{

struct member *mp;
/* create new member */
if ('(mp = (struct member *) malloc (sizeof{struct member))))

return -3;

/*add to list */

if (gp->members == NULL) /* if member list is empty */
gp->members = mp;,

else /* non-empty group_list */
gp->last->next = mp; /* add to end of list */

gp->last = mp; /* new element is last in list */

/* initialize new member */

mp->addr = mbr;

mp->loop = loop;

mp->next = gp->members; /* point new last element to 1st element */
return 0;

} /* add_member */
159

/*****t#t‘*#t‘#**#**##t#t**##***#**#t#*#t##tt**t‘tt‘tt#tt##*t*#tt#tltt

* Join a new member to a group named "groupname”. The IP address of
* the new member is in mbr, a sockaddr_in struct. If the group exists,

* then the new member is added to the end of the member list. If the

* group does not exist, then a new group is first added to the group

* list, then the new member is added to the group. Loop is used to

* control loopback of messages to the sender: 0 = no loopback, 1 =

* loopback.

FRARRRRR R RERREREREERR R AR FERRRE KR AR R AR R R R EEFR RN R R R R Rk Rk bk kR kkokkk®/

int join_group (groupname, mbr, loop)

char *groupname;
struct sockaddr_in mbr;
u_char loop;

{

struct group *gp:;

/* check if group exists */
if ({(gp = search_group_list(groupname))) { /* group doesn't exist */
if (\(gp = add_group(groupname))) /* so add a new group */
return NEG_JOIN;
}
else { /* group exists */
gp = gp->next; /* set gp to desired group */
if (search_member _list(gp,mbr)) /* member found in list */
return DUP_MEMBER;
}
/* add new member to group */
if (add_member(gp, mbr, loop) < 0)
return NEG_JOIN;
return JOIN_ACK;
} /* join_group */

160

/#*#t*#*‘tttt*#t#‘**t#‘*#t#t##t#‘*t#**l*#*t*tt*t#tt*tt#tt#t#*t**“‘t!t

* Remove group pointed to by gp->next from group_list. The group has
* had all* of its members removed and is now ready to be removed from

* the list. Return O if successful, neg. value if unsuccessful.
t#*t#***t##**tt**#*t*##**.**#*t#‘#t##****t#*##*###‘t‘ttt*ttt*##tt#t/

int remove_group (gp)
struct group *gp; /* gp points to group prior to desired group */
{
struct group *rgp; /* group to be removed */
if (group_list == NULL) /* empty list */
return -6,

if (group_list == last_group) { /* remove only member */

free(group_list);
group_list = last_group = NULL,

}
else { /* remove desired group at gp->next */
rgp = gp->next; /* group to be removed */
gp->next = rgp->next;
if (group_list = rgp) /* remove first group */
group_list = rgp->next,
if (last_group == rgp) /* remove last group */
last_group = gp;
free(rgp).
}
return O;

} /* remove_group */

/*******#*#t*********#*##**********#************##*********#***##*#t#*

161

* Remove a member pointed to by mp->next in group pointed to by gp.
* mp points to member prior to one to be removed. Returns 0 on success,
* neg. value on failure, and 1 if list is empty.

****‘#‘*#&#**ttt**#*‘#*##*#t#t*#*##*‘*#‘####t#*tt##t#tt‘*t**‘tttt##‘t/

int remove_member (gp. mp)

struct group *gp.
struct member *mp;

{
int cc,
struct member *rmp;

if (gp->members == NULL) /* no members to remove */
return -7,

if (gp->members == gp->last) { /*last member to remove */
free(gp->members),
gp->members = gp->last = NULL;

cc=1,
}
else { /* remove desired member at mp->next */
rmp = mp->next; /* member to be removed */
mp->next = rmp->next;
if (gp->members == rmp) /* remove firs. member */
gp->members = rmp->next;
if (gp->last == rmp) /* remove last member */
gp->last = mp;
free(rmp);
cc=0;
}
return cc;

} /* remove_member */

162

/ti#‘t#““t‘.t“‘t““‘t““t#““t‘*#*‘t't“‘““Ot‘t““‘#‘#‘tt#‘.‘

* Allows a member "mbr" of a group to leave the group "groupname".
* If the member was the last one, the group is also removed from the
* group list. Trying to remove a member that doesn't exist, or a

* member from a group that doesn't exist, return error codes.

* Successful removal of a member returns LEAVE_ACK code.

#**#***#*tt##*t*******tt#t#‘t#t*t##t‘*t#tt*#t#tt*t**#t##***t*#“#t#t*/

int leave_group (groupname, mbr)

char *groupname,

struct sockaddr_in mbr;

{
struct group *gp, *dgp;
struct member *mp;
int empty =0;

/* check if group exists */
if (!(gp = search_group_list(groupname))) /* group doesn't exist */
return NO_GROUP,

/* gp points to group prior to desired group */

dgp = gp->next; /* set dgp to desired group */

if (!(mp = search_member_list(dgp,mbr))) /* member not found */
return NO_MEMBER,

/* mp points to member prior to desired member */
empty = remove_member{dgp, mp),
if (empty) remove_group(gp); /* remove group if empty member list */
return LEAVE_ACK;
} /* leave_group */

/**##*##******##***t*********#***##******#*****#******#****##****#****

* Receives "message" and iteratively sends it to all members of

163

* the group "messg.group_name". Combines "message” with "from" address
* of sender in an extended format message, stored in messgbuf. The

* mcast is sent to the MC PORT of each member. Loopback of message

* to sender is controlled by a comparison of the sender's address

* (frcm) with the loop field of each destination member. On success,

* returns a count of the number of destinations sent to, on failure

* returns a neg. value.

*******#*****************#*************#**##************#***#********/

int mcast(s, message, from)

int s, /* fd for mcast socket */
char *message; /* message to send */
struct sockaddr_in from; /* sender of mcast */

{

char *messgbuf;
struct message messg,
int len, msglen;
struct group *gp;
struct member *mp;
int count =0,

/* extract messg from buffer */
bzero((char *)&messg, sizeof{messg));
bcopy(message, (char *)&messg, sizeof{messg)),

/* form extended message */
msglen = sizeof{messg) + (ntohs(messg.excl_list_len) +
ntohs(messg.subj_list_len))*2 + ntohs(messg.data_len),
len = msglen + sizeof{from),

/* allocate space for whole extended message */

if (!(messgbuf = (char*) malloc (len)))
return -1,

164

/* copy message into outgoing buffer */
bzero(messgbuf,len);

beopy((char *)&from, messgbuf, sizeof(from));
becopy(message, (messgbuf + sizeof{from)), msglen),

/* find group */
if{!(gp = search_group_list(messg.group_name))) /*group not found */
return -1,

else { /* group found.. gp points to group prior to desired one */
gp = gp->next; /* get desired group */
mp = gp->last; /* mp = tail of member list */
/* set from port to MC_PORT for addrcmp search */
from.sin_port = MC_PORT;
if (mp !=NULL) ({ /* non-empty list */
do { /* send to all */
mp = mp->next;
/* check for loopback to sender, then send to destination */
if (!((addrcmp(from, mp->addr)) && (mp->loop == NO_LOOP))) {
sendto(s, messgbuf, len, 0, (struct sockaddr *)&(mp->addr),
sizeof{struct sockaddr)),
count++;
}
} while(mp != gp->last),
}
free(messgbuf),
return count;

}

} /* mcast */

/*******t*****#*****#*******t******##*****#********#***‘*t*******#**t#

* Print group list.
#*t**#*tt******#*###**t##t#*t‘***t****#********#**********#******/

165

void print_group_list()

struct group *gp = last_group;

printf{"Group_List:\n");
if (gp) /* non-empty group list */
do {
gp = gp->next,
printf{"%s\n",gp->name);
} while (gp != last_group);
else printf{("Empty group_list\n");
} /* print_group_list */

/*********#**#****t******#*#*#***************************#*****#*#****
* Print member list of a group pointed to by gp.
##****#*##************#*****************************#***t******/

void print_member_list (gp)

struct group *gp; /* points to the desired group */
{

struct member *mp = gp->last;

printf{"Member_List for group %s:\n", gp->name),
if (mp) /* non-empty member list */
do {
mp = mp->next,
print_sock_addr(mp->addr);
printf{("loop = %d\n\n", mp->loop),
} while (mp != gp->last);
else printf{"Empty member _list\n");
} /* print_member_list */

166

/#t“‘#‘##ttt#t##tt*‘t#‘t##tt"#‘#t“t#*##tttt‘t#tt*t##t‘##““#tttttl

* MSERVER.C ver 1.0
* Membership Server program.

* At present, includes:
* join & leave multicast group
* message sending & receiving

*

*

pairwise monitoring

working on change processing sequence

* Member failures are logged to file "failures".

*

* Written by Dave Neely, April 1994.

* Modified: 4/25/94

*********#**************#*********##***********##**#*****##***t*#*##*/

#include "msutil.c"

struct sockaddr_in to, from; /* general use address structures */
struct hostent *hp; /* host entity struct */

u_short mygid, cw, ccw; /* mserver group IDs */

struct timeval tp; /* for time stamps */

struct servent tzp; /* for timing */

struct timeval recv_timeout; /* select() receive timeout */

struct timeval query_timeout; /* timeout for monitoring query */
struct timeval reply_timeout, /* timeout for monitoring reply */
struct timeval messg_timeout; /* timeout for response message */
struct timeval ACK timeout; /* timeout for ACK message */
FILE *fp, /* file to record mserver failures */
int MCASTER;

main (argc, argv)

int argc;
char *argv(];

{

167

u_short message type;

u_short GV, gsize; /* group view no. and group size */
int len, i, cc;

int recd, sent;

int retries = 2; /* monitoring retries for no reply */

char groupname[MAXGROUPNAME].

char hostname[MAXGROUPNAME];

char [Paddr[16};

char groupaddr[16];

struct table_entry core_tablefMAXTBLSIZE]; /* core-set state table */

u_short coordinator; /* for change processing */
long authentication = Ox 7,
struct gid_entry *excl_list, *subj_list; /* lists of mserver gids */

u_short excl_list_len, subj_list_len;

if (argc !'=8) {
printf{"usage: mserver groupname groupIPaddr"),
printf(" mygid cw_gid cw_addr ccw_gid ccw_addr\n");
exit(-1);

H

/**** Note: no error checking on arguments ****/

strcpy(groupname, argv[1]);

strcpy(groupaddr, argv([2]);

mygid = atoi(argv{3]);

cw = atoi(argv[4]);

ccw = atoi(argv([6]);

/*get info about local host */
gethostname(hostname, MAXGROUPNAME),
if ((hp = gethostbyname(hostname)) = 0) {
perror("unable to get hostname");
exit(-1);
}
print_hostent(hp);

168

strcpy(IPaddr, inet_ntoa(*(struct in_addr*)}(hp->h_addr))),

/* initialize core_table */

bzero((char *)core_table, sizeof{core_table));
core_table[mygid].addr = inet_addr(IPaddr);
core_table[mygid].cw =cw;
core_table[mygid].ccw = ccw;
core_table{cw].addr = inet_addr(argv[5]);
core_table[ccw].addr = inet_addr(argv([7]);
core_table[cw].ccw = mygid,
core_tablefccw].cw = mygid;

/* intialize gid lists */
excl_list_len = subj_list_len = 0;

excl_list = subj_list = NULL,;

/* determine if [P multicast or MCASTER will be used */

#itndef IFF_MULTICAST

MCASTER = 1;

#else /* check that group address is in Class D range */

if ((inet_addr(groupaddr) < inet_addr("224.0.0.255")) ||
(inet_addr(groupaddr) > inet_addr("239.255.255.255")))
MCASTER = 1;

#endif

printf("Mserver\n\n");
printf("mygid: %d, cw: %d, ccw: %d\n", mygid,
core_table[mygid].cw, core_table[mygid].ccw),
printf{("my ");
print_in_addr(&(core_table[mygid].addr));
printf{("cw ");
print_in_addr(&(core_table[cw].addr));
printf{"ccw "),
print_in_addr(&(core_table{ccw].addr));

169

/* initialize general purpose "ms" & mcaster "mc" sockets */
ms = init_socket(sin, htons(MS_PORT));

print_sock_info (ms, sin),

mc = init_socket(mcsin, htons(MC_PORT)).
print_sock_info (mc, mcsin);

/* initialize timeouts */
/* recv_timeout is an absolute period, not referenced to current time */
recv_timeout.tv_sec =T _RECV/ SEC; /* set seconds */
recv_timeout.tv_usec = T_RECV % SEC; /* set useconds */
set_timeout(&query_timeout, T_QUERY), /* set timer for next query */
set_timeout(&reply_timeout, MAXTIME), /* reset timer for reply */
set_timeout(&messg_timeout, MAXTIME); /* reset messg timer */
set_timeout(&ACK _timeout, MAXTIME); /* reset ACK timer */

cc = join_mcast_group(groupname, groupaddr);
switch (cc) {
case JOIN_ACK:
printf("Group %s joined.\n", groupname),
break;
case DUP_MEMBER :
printf{"Unable to join group %s: duplicate member\n", groupname);
exit(-1),
break;
case NEG_JOIN :
printf{"Unable to join group %s.\n", groupname);
exit(-1),
break;
default :
printf{"Invalid code returned during group join.\n"),
exit(-1),

170

for(;)) { /* begin main loop */
len = sizeof{from),

/* check if message ready */
if ((recd = recv_messg(ms, mc, &messg, &from, recv_timeout)) > 0) {
printf{"MESSAGE RECEIVED:\n"),
printf{"%d bytes received:\n", recd),
print_messg(messg);
printf{"from:\n"),
print_sock_addr(from);
message_type = ntohs(messg.msg_type),

/* select appropriate action for received message type */
switch (message_type) {
/* mserver set message types */
case QUERY:
/* check if query from cw neighbor in this group */
if ((!(strcmp(messg.group _name, groupname))) &&
(from.sin_addr.s_addr == core_table[cw].addr)) {
/* then send reply */
form_messg(&messg, groupname,0,0, mygid, REPLY,
¢w,0,0,0,0,0,0);
len = sizeof{messg);
if ((sent = send_messg(ms, messg, from)) != len) {
printf{"error in message length sent\n");

}
break;
case REPLY:

/* check if query from ccw neighbor in this group */

if (('(strcmp(messg.group_name, groupname))) &&
(from.sin_addr.s_addr == core_table[ccw].addr)) {
/* then reset reply and query timers, and # retries */
printf{"REPLY rec'd from %d, resetting timers\n",

171

ntohs(messg. sender_gid));
set_timeout(&reply_timeout, MAXTIME);
set_timeout(&query_timeout, T_QUERY),

retries = 2,

}

break;
/* mserver INITIATE message types */
case M_JOIN: printf{" M_JOIN\n"); break;
case M_LEAVE: printf(" M_LEAVE\n"), break;
case M_SPLIT: print{(" M_SPLIT\n"), break;
case M_MERGE: prit(®* M_MERGEW"); break;

case M_ADD_PARENT: printf® M_ADD PARENT\n"); break;
case M_DEL_PARENT: printR* M _DEL_PARENT\n"); break;

case M_STATS _S: printf("* M_STATS_S\n"), break;
case M_STATS_L: pnntf(" M_STATS L\n"), break;
case M_FAIL.: prntf(" M_FAIL\n"), break;

case M_MULTI_FAIL: pnnt" M_MULTI FAIL\n"), break,
case M_COORD _FAIL: print" M_COORD FAIL\n"); break;
/* change sequence message types */

case ACK: printf(" ACK\n"); break;
case COMMIT: printi® COMMIT\n"), break;
case WAIT: printf(" WAIT\n"); break;
case MSG_QUERY: prntf(" MSG_QUERY\n"), break;
case INIT: printf(" INIT\n"), break;,

/* external physical requests to core-set */

case M_JOIN_REQ: printfi" M_JOIN_REQ\n"), break;
case M_LEAVE_REQ: printR" M_LEAVE REQ\n"), break;
case M_SPLIT_REQ: printf{®* M_SPLIT_REQ\n"); break;
case M_MERGE_REQ: prictR" M_MERGE_REQ\n"), break;
case M_ADD PAR_REQ:printR" M_ADD PAR_REQ\n"),break;
case M_DEL_PAR_REQ: printf" M_DEL_PAR_REQ\n"); break;
case M_STATS_S_REQ: printf{i* M_STATS S REQ\n"); break;
case M_STATS_L_REQ: primf{" M_STATS L _REQ\n"), break;
/* application group INITIATE message types */

172

case A_JOIN: print® A_JOIN\n");

case A LEAVE: printf(®* A_LEAVEWn").
case A_SPLITQ: printf” A_SPLIT\n"),
case A MERGE: printR" A_MERGE\n");
case A_STATS_S: printf{"* A_STATS_S\n"),
case A_STATS L. printi” A _STATS L\n");
case SUBMIT: printf{* SUBMIT\n"),

case DIRECT: printf{(” DIRECT\n");

/* application group request message types */

case A_JOIN_REQ: printf{(" A_JOIN_REQ\n");

case A LEAVE_REQ: printfl" A_LEAVE_REQW"),
case A SPLIT_REQ: printf(" A_SPLIT_REQ\n")
case A MERGE_REQ: printf{" A_MERGE_REQ\n"),
case A STATS_S REQ: print" A_STATS_S_REQ\n")
case A_STATS L REQ: printf(" A_STATS_L_REQw"),
/* mcaster message types */

case JOIN_GROUP: printf(" JOIN_GROUP\n"), break;
case LEAVE GROUP: printf{" LEAVE_GROUP\n"), break;
case JOIN_ACK: printf(" JOIN_ACK\n"), break;
case DUP_ MEMBER: printf(" DUP_MEMBERWn"), break;
case NEG_JOIN: printf(" NEG_JOIN\n"); break;
case LEAVE_ACK: print® LEAVE_ACK\n"), break;
case NO_GROUP: prit” NO_GROUPW"), break;
case NO_MEMBER: printf" NO MEMBER\n"), break;
case NEG_LEAVE: printR® NEG_LEAVEW"), break;
default: printf{" %d\n", ntohs(messg.msg_type));

} /* switch */
} /*if (recd > 0) */
if (recd < 0)
printf{"error in message rec'd\n"),

/* check timeouts */
if (timed_out(query_timeout)) { /* time to send a new query */
/* reset QUERY timer */

173

break;
break;
break;,
break,
break;
break;
break;
break:

break;
break;
break;
break;
break;
break;

set_timeout(&query_timeout, T_QUERY),

/* set REPLY timer */

set_timeout(&reply_timeout, T_REPLY),

form_messg(&messg, groupname,0 .0 , mygid, QUERY, ccw, 0,0,0,0,0,0);

len = sizeof{messg);

to.sin_family = AF_INET;

to.sin_port = htons(MS_PORT);,

to.sin_addr.s_addr = core_table[ccw].addr;

if ((sent = send_messg(ms, messg, to)) !=len) {
printf{"error in message length sent\n"),
exit(-1);

}

} /* query_timeout */

if (timed_out(reply_timeout)) { /* retry or note failure */
/* reset QUERY timer */
set_timeout(&query_timeout, T_QUERY);,
if ((retries--) < 0) { /* then ccw is failed */
retries = 2; /* reset retry counter */
/* log an entry in failures file */
gettimeofday(&tp, &tzp),
if (fp = fopen("failures"”, "a")) {
fprintf (fp, "Member %d is detected failed by %d at %d sec.\n\n",
ccw, mygid, tp.tv_sec);
fclose(fp),

}
/* At this point, would want to start fail processing */

set_timeout(&reply_timeout, MAXTIME), /* reset reply timer */
}
else {
/* set REPLY timer */
set_timeout(&reply_timeout, T_REPLY);
form_messg(&messg, groupname,0,0, mygid, QUERY,
ccw,0,0,0,0,0,0);

174

len = sizeof{messg),

to.sin_family = AF_INET;

to.sin_port = htons(MS_PORT);

to.sin_addr.s_addr = core_table[ccw].addr;
\ if ((sent = send_messg(ms, messg, to)) !=len) {
| printf{"error in message length sent\n");
exit(-1);

}

} /* reply_timeout */
} /* main for loop */

175

(1]

(2]

(3]

[4]

(3]

(6]

(7]

(8]

[9]

(10]

P —,—

LIST OF REFERENCES

K. P. Birman, "The process group approach to reliable distributed computing,”
Technical Report TR91-1216, Cornell University Computer Science Department,
Ithaca, NY, July 1991,

F. Cristian, R. Dancey, and J. Dehn, "Fault-tolerance in the advanced automation
system,” The 20th International Symposium on Fault-tolerant (‘omputing, pp.
6-17, June 1990.

L. L. Peterson, N. Buchholz, and R. D. Schlichting, "Preserving and using context
information in interprocess communication," ACM Transactions on Computer
Systems, vol. 7, no. 3, pp. 217-246, August 1989

D. Powell, M. Chereque, D. Drackley, "Fault-tolerance in Delta-4," Operating
Systems Review, vol. 25, no. 2, pp. 122-125, April 1991.

F. Cristian, "Agreeing on who is present and who is absent in a synchronous
distributed system," Proceedings of the 18th International Conference on Fault
Tolerant Computing, Tokyo, Japan, pp. 206-211, 1988.

S. Deering, "Host extension for IP Multicasting," Memo from Network Working
Group, Stanford University, August 1989.

S. Deering, "IP Multicasting Extensions for 4.3BSD UNIX and related systems
(MULTICAST 1.2 Release)," RFC 1112, Stanford University, August 1989.

R. Braudes and S. Zabele, "Requirements for multicast protocols,”" Memo from
Network Working Group, TASC, May 1993.

A. M. Ricciardi and K. P. Birman, "Using process groups tc implement failure
detection in asynchronous environments," ACM Symposium on Principles of
Distributed Computing, Montreal, juebec, Canada, pp. 341-353, August 1991.
Also available as TR91-1188, Dept. of Computer Science, Cornell University.

R. D. Schlichting and F. Schneider, "Fail-stop processors: an approach to
designing fault-tolerant computing systems," ACM Transactions on Computer
Systems, vol. 1, no. 3, pp. 222-238, August 1983.

[

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

(21]

K. P Birman and T. A. Joseph, "Reliable communications in the presence of
failures," ACM Transactions on (‘omputer Systems, vol. 5, no. 1, pp. 47-76,
February 1987.

B. Rajagopalan, "A mechanism for scalable concast communication," (‘omputer
(‘ommunications, vol. 16, no. 8, pp. 484-493, August 1993.

F. Jahanian and W. Moran Jr., "Strong, weak and hybrid group membership,"
Proceedings of the Second Workshop on the Management of Replicated Data,
Monterey, California, pp. 34-38, November 1992, Also available as Technical
Report RC 18040 (79173) 5/28/92, IBM Research Division, T. J. Watson
Research Center, 1992.

F. Jahanian, S. Fakhoun, and R. Rajkumar, "Processor group membership
protocols: Specification, design and implementation," paper presented at
Symposium on Relable Distributed Systems, October 1993.

J. M. Chang and N. F. Maxemchuk, "Reliable broadcast protocol," ACM
Transactions on Computer Systems, vol. 2, no. 3, pp. 251-273, August 1984.

S. A. Bruso, "A failure detection and notification protocol for distributed
computing systems," Proceedings of the 5th International Conference on
Distributed Computing Systems, pp. 116-123, May 1985.

A. El Abbadi, D. Skeen, and F. Cristian, "An efficient fault-tolerant protocol for
replicated data management," Proceedings of the 4th ACM Symposium on
Principles of Database Systems, pp. 215-229, 1985.

P. Verissimo and J. A. Marques, "Reliable broadcast for fault-tolerance on local
computer networks," Symposium on Reliable Distributed Systems, pp. 54-63,
October 1990.

L. E. Moser, P. M. Melliar-Smith, and V. Agrawala, "Membership algorithm for
asynchronous distributed systems," Proceedings of the 11th International
(‘onference on Distributed Computing Systems, pp. 480-488, 1991.

S. Mishra, L. L. Peterson, and R. D. Schlichting, "Consul: A communication
substrate for fault-tolerant distributed programs," Technical Report TR 91-32,
Department of Computer Science, University of Arizona, 1991.

J. Auerbach, M. Gopal, M. Kaplan, and S. Kutten, "Multicast group membership
management in high speed wide area networks," Proceedings of the 1lth
International Conference on Distributed Computing Systems, pp. 231-238, 1991.

177

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. A. Golding and D. D. E. Long, "The performance of weak-consistency
replication protocols,” Technical Report ucsc-crl-92-30, Department _of
Computer Science, University of California at Santa Cruz, July 1992.

P. D. Ezhilselvan and R. de Lemos, "A robust group membership algorithm for
distributed real-time systems," Proceedings of the Real-Time Systems
Symposium, pp. 173-179, 1990.

K. H. Kim, H. Kopetz, K. Mori, E. H. Shokri, and G. Gruensteidl, "An efficient
decentralized approach to processor-group membership maintenance in real-time
LAN systems: The PRHB/ED scheme," Symposium on Reliable Distributed
Systems, pp. 74-83, 1992.

L. Rodrigues, P. Verissimo, and J. Rufino, "A low-level processor group
membership protocol for LANs," Technical Report Oct. 1992, Technical
University of Lisbon, Portugal, INESC, 1992.

S. Levi and A. K. Agrawala, Fault Tolerant System Design, McGraw-Hill, New
York, New York, 1994.

J. Misra and K. M. Chandy, Parallel Program Design - A Foundation, Addison-
Wesley, New York, New York, 1989.

G. Andrews, Concurrent Programming - Principles and Practice, Benjamin/
Cummings, Redwood City, California, 1991.

D. Comer and D. Stevens, Internetworking with TCP/IP, Vol. I: Principles,
Protocols, and Architecture, 2nd edition, Prentice Hall, Englewood Cliffs, New
Jersey, 1991.

G. M. Lundy and R. E. Miller, "Specification and analysis of a data transfer

protocol using systems of communicating machines," Distributed Computing,
vol. 5, no. 3, pp. 145-157, December 1991.

178

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

. Dudley Knox Library, Code 52

Naval Postgraduate School
Monterey, California 93943-5101

. Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

. Professor Shridhar B. Shukla, Code EC/Sh

DeparmentofElecumlandComputerEngnemng

Naval Postgraduate School
Monterey, California 93943-5121

. Professor Gilbert M. Lundy, Code CS/Lu
Department of Computer Science

Naval Postgraduate School -
Monterey, California 93943-5118

. LT David S. Neely

P.O. Box 63
Amold, California 95223-0063

179

